Object-shape recognition and 3D reconstruction from tactile sensor images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04

AUTHORS

Anwesha Khasnobish, Garima Singh, Arindam Jati, Amit Konar, D. N. Tibarewala

ABSTRACT

This article presents a novel approach of edged and edgeless object-shape recognition and 3D reconstruction from gradient-based analysis of tactile images. We recognize an object's shape by visualizing a surface topology in our mind while grasping the object in our palm and also taking help from our past experience of exploring similar kind of objects. The proposed hybrid recognition strategy works in similar way in two stages. In the first stage, conventional object-shape recognition using linear support vector machine classifier is performed where regional descriptors features have been extracted from the tactile image. A 3D shape reconstruction is also performed depending upon the edged or edgeless objects classified from the tactile images. In the second stage, the hybrid recognition scheme utilizes the feature set comprising both the previously obtained regional descriptors features and some gradient-related information from the reconstructed object-shape image for the final recognition in corresponding four classes of objects viz. planar, one-edged object, two-edged object and cylindrical objects. The hybrid strategy achieves 97.62 % classification accuracy, while the conventional recognition scheme reaches only to 92.60 %. Moreover, the proposed algorithm has been proved to be less noise prone and more statistically robust. More... »

PAGES

353-362

References to SciGraph publications

  • 2008. Haptic object identification in HUMAN HAPTIC PERCEPTION: BASICS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11517-014-1142-1

    DOI

    http://dx.doi.org/10.1007/s11517-014-1142-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051017411

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24469960


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Support Vector Machine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Touch", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khasnobish", 
            "givenName": "Anwesha", 
            "id": "sg:person.01260452574.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Garima", 
            "id": "sg:person.010662703442.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662703442.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jati", 
            "givenName": "Arindam", 
            "id": "sg:person.011524344647.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524344647.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konar", 
            "givenName": "Amit", 
            "id": "sg:person.01337053064.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tibarewala", 
            "givenName": "D. N.", 
            "id": "sg:person.010726132604.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1108/02602280410515770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003281915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/027836499601500403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020316883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/027836499601500403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020316883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/331499.331504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026347712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.robot.2010.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029902595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7643-7612-3_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038404224", 
              "https://doi.org/10.1007/978-3-7643-7612-3_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7643-7612-3_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038404224", 
              "https://doi.org/10.1007/978-3-7643-7612-3_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119952954.ch6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045189367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.intcom.2008.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052009762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976698300017197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053132543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.58344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsen.2012.2220345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061322303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mra.2013.2255515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061419706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/toh.2012.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061741396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2009.2033627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061785101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2011.2120830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061785241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2011.2125350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061785245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2011.2162271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061785299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2008.4651175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093258366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.1997.619334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093349899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2009.5415419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093798370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccvw.2009.5457522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094065146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iecon.2000.973189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094414547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.2004.1307249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094519550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2012.6252593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094587198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2008.4650982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095412494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/robot.1993.291939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095616791"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-04", 
        "datePublishedReg": "2014-04-01", 
        "description": "This article presents a novel approach of edged and edgeless object-shape recognition and 3D reconstruction from gradient-based analysis of tactile images. We recognize an object's shape by visualizing a surface topology in our mind while grasping the object in our palm and also taking help from our past experience of exploring similar kind of objects. The proposed hybrid recognition strategy works in similar way in two stages. In the first stage, conventional object-shape recognition using linear support vector machine classifier is performed where regional descriptors features have been extracted from the tactile image. A 3D shape reconstruction is also performed depending upon the edged or edgeless objects classified from the tactile images. In the second stage, the hybrid recognition scheme utilizes the feature set comprising both the previously obtained regional descriptors features and some gradient-related information from the reconstructed object-shape image for the final recognition in corresponding four classes of objects viz. planar, one-edged object, two-edged object and cylindrical objects. The hybrid strategy achieves 97.62\u00a0% classification accuracy, while the conventional recognition scheme reaches only to 92.60\u00a0%. Moreover, the proposed algorithm has been proved to be less noise prone and more statistically robust. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11517-014-1142-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1005585", 
            "issn": [
              "1357-5481", 
              "1741-0444"
            ], 
            "name": "Medical & Biological Engineering & Computing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "name": "Object-shape recognition and 3D reconstruction from tactile sensor images", 
        "pagination": "353-362", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f30768fd9ed134836b7bd086ff28e84dfdac513a302f3b7c3d073656aaee2a12"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24469960"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7704869"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11517-014-1142-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051017411"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11517-014-1142-1", 
          "https://app.dimensions.ai/details/publication/pub.1051017411"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000524.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11517-014-1142-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-014-1142-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-014-1142-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-014-1142-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-014-1142-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      21 PREDICATES      60 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11517-014-1142-1 schema:about N339f91d820e64265bd091d18a2ac9c6d
    2 N3adfb7c8b3314360b3a6e867c172aa52
    3 Nad76627165b741d5a8e057f4bcd43476
    4 Nb35335ef5ff14e28a8c70a392ecc6a3b
    5 Nbb08c05a755e4e3bb6ed7e4351f7802b
    6 Nd139de315e094169b64ee26d9e12c9c0
    7 anzsrc-for:08
    8 anzsrc-for:0801
    9 schema:author N32f9e93a38174d829276e040017a1e84
    10 schema:citation sg:pub.10.1007/978-3-7643-7612-3_16
    11 https://doi.org/10.1002/9781119952954.ch6
    12 https://doi.org/10.1016/j.intcom.2008.08.004
    13 https://doi.org/10.1016/j.robot.2010.07.002
    14 https://doi.org/10.1108/02602280410515770
    15 https://doi.org/10.1109/5.58344
    16 https://doi.org/10.1109/iccvw.2009.5457522
    17 https://doi.org/10.1109/iecon.2000.973189
    18 https://doi.org/10.1109/iecon.2009.5415419
    19 https://doi.org/10.1109/ijcnn.2012.6252593
    20 https://doi.org/10.1109/iros.2008.4650982
    21 https://doi.org/10.1109/iros.2008.4651175
    22 https://doi.org/10.1109/jsen.2012.2220345
    23 https://doi.org/10.1109/mra.2013.2255515
    24 https://doi.org/10.1109/robot.1993.291939
    25 https://doi.org/10.1109/robot.1997.619334
    26 https://doi.org/10.1109/robot.2004.1307249
    27 https://doi.org/10.1109/toh.2012.64
    28 https://doi.org/10.1109/tro.2009.2033627
    29 https://doi.org/10.1109/tro.2011.2120830
    30 https://doi.org/10.1109/tro.2011.2125350
    31 https://doi.org/10.1109/tro.2011.2162271
    32 https://doi.org/10.1145/331499.331504
    33 https://doi.org/10.1162/089976698300017197
    34 https://doi.org/10.1177/027836499601500403
    35 schema:datePublished 2014-04
    36 schema:datePublishedReg 2014-04-01
    37 schema:description This article presents a novel approach of edged and edgeless object-shape recognition and 3D reconstruction from gradient-based analysis of tactile images. We recognize an object's shape by visualizing a surface topology in our mind while grasping the object in our palm and also taking help from our past experience of exploring similar kind of objects. The proposed hybrid recognition strategy works in similar way in two stages. In the first stage, conventional object-shape recognition using linear support vector machine classifier is performed where regional descriptors features have been extracted from the tactile image. A 3D shape reconstruction is also performed depending upon the edged or edgeless objects classified from the tactile images. In the second stage, the hybrid recognition scheme utilizes the feature set comprising both the previously obtained regional descriptors features and some gradient-related information from the reconstructed object-shape image for the final recognition in corresponding four classes of objects viz. planar, one-edged object, two-edged object and cylindrical objects. The hybrid strategy achieves 97.62 % classification accuracy, while the conventional recognition scheme reaches only to 92.60 %. Moreover, the proposed algorithm has been proved to be less noise prone and more statistically robust.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N3025edf037d6447c9403db82ec7fe235
    42 N58a2c69c88824957a78298c706d09a88
    43 sg:journal.1005585
    44 schema:name Object-shape recognition and 3D reconstruction from tactile sensor images
    45 schema:pagination 353-362
    46 schema:productId N4b28bb1eefe9469ca52c89cea8e641e7
    47 Nc541b8210f15460d8208e894dcbe7d2a
    48 Ne14cb39e131341348efd49de1cbc6f13
    49 Ne29ab4d71e2c4cfaaf93d0871c06f080
    50 Ne91166dc75844f92b95e71dca1cdfe0b
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051017411
    52 https://doi.org/10.1007/s11517-014-1142-1
    53 schema:sdDatePublished 2019-04-10T17:34
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher Nf0866ad2c9f947fea1cfeb1fc2e09420
    56 schema:url http://link.springer.com/10.1007%2Fs11517-014-1142-1
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N1ed8824062d843698d75e699f48cda9e rdf:first sg:person.010726132604.03
    61 rdf:rest rdf:nil
    62 N3025edf037d6447c9403db82ec7fe235 schema:volumeNumber 52
    63 rdf:type schema:PublicationVolume
    64 N32f9e93a38174d829276e040017a1e84 rdf:first sg:person.01260452574.41
    65 rdf:rest N9096943efcc44cc28dcf8ebef5fc90f3
    66 N339f91d820e64265bd091d18a2ac9c6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Pattern Recognition, Automated
    68 rdf:type schema:DefinedTerm
    69 N3adfb7c8b3314360b3a6e867c172aa52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Imaging, Three-Dimensional
    71 rdf:type schema:DefinedTerm
    72 N4b28bb1eefe9469ca52c89cea8e641e7 schema:name readcube_id
    73 schema:value f30768fd9ed134836b7bd086ff28e84dfdac513a302f3b7c3d073656aaee2a12
    74 rdf:type schema:PropertyValue
    75 N58a2c69c88824957a78298c706d09a88 schema:issueNumber 4
    76 rdf:type schema:PublicationIssue
    77 N9096943efcc44cc28dcf8ebef5fc90f3 rdf:first sg:person.010662703442.33
    78 rdf:rest Nfc1c3bedce2444e6980faac105ae8150
    79 Nad76627165b741d5a8e057f4bcd43476 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Support Vector Machine
    81 rdf:type schema:DefinedTerm
    82 Nb35335ef5ff14e28a8c70a392ecc6a3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Algorithms
    84 rdf:type schema:DefinedTerm
    85 Nb52a1af0fe564c73a469f75ca4f81f6f rdf:first sg:person.01337053064.29
    86 rdf:rest N1ed8824062d843698d75e699f48cda9e
    87 Nbb08c05a755e4e3bb6ed7e4351f7802b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Touch
    89 rdf:type schema:DefinedTerm
    90 Nc541b8210f15460d8208e894dcbe7d2a schema:name pubmed_id
    91 schema:value 24469960
    92 rdf:type schema:PropertyValue
    93 Nd139de315e094169b64ee26d9e12c9c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Humans
    95 rdf:type schema:DefinedTerm
    96 Ne14cb39e131341348efd49de1cbc6f13 schema:name doi
    97 schema:value 10.1007/s11517-014-1142-1
    98 rdf:type schema:PropertyValue
    99 Ne29ab4d71e2c4cfaaf93d0871c06f080 schema:name dimensions_id
    100 schema:value pub.1051017411
    101 rdf:type schema:PropertyValue
    102 Ne91166dc75844f92b95e71dca1cdfe0b schema:name nlm_unique_id
    103 schema:value 7704869
    104 rdf:type schema:PropertyValue
    105 Nf0866ad2c9f947fea1cfeb1fc2e09420 schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Nfc1c3bedce2444e6980faac105ae8150 rdf:first sg:person.011524344647.45
    108 rdf:rest Nb52a1af0fe564c73a469f75ca4f81f6f
    109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Information and Computing Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Artificial Intelligence and Image Processing
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1005585 schema:issn 1357-5481
    116 1741-0444
    117 schema:name Medical & Biological Engineering & Computing
    118 rdf:type schema:Periodical
    119 sg:person.010662703442.33 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    120 schema:familyName Singh
    121 schema:givenName Garima
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662703442.33
    123 rdf:type schema:Person
    124 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    125 schema:familyName Tibarewala
    126 schema:givenName D. N.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
    128 rdf:type schema:Person
    129 sg:person.011524344647.45 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    130 schema:familyName Jati
    131 schema:givenName Arindam
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524344647.45
    133 rdf:type schema:Person
    134 sg:person.01260452574.41 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    135 schema:familyName Khasnobish
    136 schema:givenName Anwesha
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41
    138 rdf:type schema:Person
    139 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    140 schema:familyName Konar
    141 schema:givenName Amit
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
    143 rdf:type schema:Person
    144 sg:pub.10.1007/978-3-7643-7612-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038404224
    145 https://doi.org/10.1007/978-3-7643-7612-3_16
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1002/9781119952954.ch6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045189367
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.intcom.2008.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052009762
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.robot.2010.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029902595
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1108/02602280410515770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003281915
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/5.58344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179733
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/iccvw.2009.5457522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094065146
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/iecon.2000.973189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094414547
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/iecon.2009.5415419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093798370
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/ijcnn.2012.6252593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094587198
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/iros.2008.4650982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095412494
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/iros.2008.4651175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093258366
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/jsen.2012.2220345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322303
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/mra.2013.2255515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061419706
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/robot.1993.291939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095616791
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/robot.1997.619334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093349899
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/robot.2004.1307249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094519550
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/toh.2012.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741396
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/tro.2009.2033627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785101
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/tro.2011.2120830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785241
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/tro.2011.2125350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785245
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1109/tro.2011.2162271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785299
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1145/331499.331504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026347712
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1162/089976698300017197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132543
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1177/027836499601500403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020316883
    194 rdf:type schema:CreativeWork
    195 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
    196 schema:name Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
    197 School of Bioscience and Engineering, Jadavpur University, Kolkata, India
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...