Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Saugat Bhattacharyya, Abhronil Sengupta, Tathagatha Chakraborti, Amit Konar, D. N. Tibarewala

ABSTRACT

Brain-computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest. More... »

PAGES

131-139

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9

DOI

http://dx.doi.org/10.1007/s11517-013-1123-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012893991

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24165805


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain-Computer Interfaces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Saugat", 
        "id": "sg:person.07421667055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sengupta", 
        "givenName": "Abhronil", 
        "id": "sg:person.01121424636.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121424636.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborti", 
        "givenName": "Tathagatha", 
        "id": "sg:person.01167540036.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167540036.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibarewala", 
        "givenName": "D. N.", 
        "id": "sg:person.010726132604.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-30672-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012480796", 
          "https://doi.org/10.1007/3-540-30672-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wics.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012628338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-004-0218-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012721897", 
          "https://doi.org/10.1007/s10044-004-0218-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00433-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013938052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00433-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013938052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-006-0107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021277335", 
          "https://doi.org/10.1007/s11517-006-0107-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e328315ee2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023761259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e328315ee2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023761259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e328315ee2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023761259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2010.00034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023769110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.11.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027240461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2008.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034268827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2007/23864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038095683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039507510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11550822_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040626103", 
          "https://doi.org/10.1007/11550822_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11550822_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040626103", 
          "https://doi.org/10.1007/11550822_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-7-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041127871", 
          "https://doi.org/10.1186/1743-0003-7-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87559-8_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044516094", 
          "https://doi.org/10.1007/978-3-540-87559-8_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87559-8_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044516094", 
          "https://doi.org/10.1007/978-3-540-87559-8_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/4/2/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053010107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053132543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/86.712230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061241319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mci.2010.936309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061392382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mis.2008.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061406065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.827088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2003.810426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061739956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2003.814454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061739986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2012.2201310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1974.5408453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2007.909595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2008.4650206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077839656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2010.5627178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078305605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078504071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078504139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccdc.2009.5192711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093319262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2010.5687156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093535249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2012.6256574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093579164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "Brain-computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11517-013-1123-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata", 
    "pagination": "131-139", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d6d23f56b5760626a7cec1672c5a6aee2861747299880bccaaf4608d7c6cead"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24165805"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11517-013-1123-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012893991"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11517-013-1123-9", 
      "https://app.dimensions.ai/details/publication/pub.1012893991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11517-013-1123-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      71 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11517-013-1123-9 schema:about N0c6d513c96f8478b97e867fb6cba1adf
2 N189ae9544da84a318636c82798bae145
3 N3c34d19a642f4ccfa8902275896d3171
4 N4d42249d76b4406ebb1be145c80305cb
5 Nb3f1540b64fa4d40a9b6bc9a4f5ca2b3
6 Nc30d2f401f004cd7ba0218f02a5abc9d
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author N6e538f0e9a314680a17d6466d8857ec4
10 schema:citation sg:pub.10.1007/11550822_8
11 sg:pub.10.1007/3-540-30672-2_4
12 sg:pub.10.1007/978-1-4757-2440-0
13 sg:pub.10.1007/978-3-540-87559-8_95
14 sg:pub.10.1007/s10044-004-0218-1
15 sg:pub.10.1007/s11517-006-0107-4
16 sg:pub.10.1023/a:1008202821328
17 sg:pub.10.1186/1743-0003-7-60
18 https://doi.org/10.1002/wics.101
19 https://doi.org/10.1016/0165-1684(94)90029-9
20 https://doi.org/10.1016/j.clinph.2008.06.001
21 https://doi.org/10.1016/j.eswa.2009.11.064
22 https://doi.org/10.1016/j.neucom.2011.06.026
23 https://doi.org/10.1016/s0925-2312(03)00433-8
24 https://doi.org/10.1088/1741-2560/4/2/r01
25 https://doi.org/10.1097/wco.0b013e328315ee2d
26 https://doi.org/10.1109/86.712230
27 https://doi.org/10.1109/ccdc.2009.5192711
28 https://doi.org/10.1109/cec.2012.6256574
29 https://doi.org/10.1109/iembs.2008.4650206
30 https://doi.org/10.1109/iembs.2010.5627178
31 https://doi.org/10.1109/iembs.2011.6091728
32 https://doi.org/10.1109/iembs.2011.6091898
33 https://doi.org/10.1109/isda.2010.5687156
34 https://doi.org/10.1109/mci.2010.936309
35 https://doi.org/10.1109/mis.2008.41
36 https://doi.org/10.1109/tbme.2004.827088
37 https://doi.org/10.1109/tnsre.2003.810426
38 https://doi.org/10.1109/tnsre.2003.814454
39 https://doi.org/10.1109/tro.2012.2201310
40 https://doi.org/10.1109/tsmc.1974.5408453
41 https://doi.org/10.1109/tsmca.2007.909595
42 https://doi.org/10.1155/2007/23864
43 https://doi.org/10.1162/089976698300017197
44 https://doi.org/10.1162/089976698300017467
45 https://doi.org/10.3389/fnins.2010.00034
46 schema:datePublished 2014-02
47 schema:datePublishedReg 2014-02-01
48 schema:description Brain-computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N86c46b7f713747eda04229d01608b757
53 Nf657316bd7a443ad9226a764d101f6ad
54 sg:journal.1005585
55 schema:name Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata
56 schema:pagination 131-139
57 schema:productId N545168f29bf24bfdb07dc925da1b145e
58 Nb248d99e6dbe432f9f5b635c67e6053f
59 Nc861737d0dd748d6b7b650b367710f0b
60 Nd94d54f9b8ee4759a8376944b41e0002
61 Ndd762580ef6e48fa89e177e8e25f72a8
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012893991
63 https://doi.org/10.1007/s11517-013-1123-9
64 schema:sdDatePublished 2019-04-10T13:19
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N1869207a12344fcab0abf0c0ab3cbdec
67 schema:url http://link.springer.com/10.1007%2Fs11517-013-1123-9
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0c6d513c96f8478b97e867fb6cba1adf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Artificial Intelligence
73 rdf:type schema:DefinedTerm
74 N1869207a12344fcab0abf0c0ab3cbdec schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N189ae9544da84a318636c82798bae145 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Algorithms
78 rdf:type schema:DefinedTerm
79 N3c34d19a642f4ccfa8902275896d3171 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Brain-Computer Interfaces
81 rdf:type schema:DefinedTerm
82 N4d42249d76b4406ebb1be145c80305cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Pattern Recognition, Automated
84 rdf:type schema:DefinedTerm
85 N545168f29bf24bfdb07dc925da1b145e schema:name dimensions_id
86 schema:value pub.1012893991
87 rdf:type schema:PropertyValue
88 N6e538f0e9a314680a17d6466d8857ec4 rdf:first sg:person.07421667055.72
89 rdf:rest Nf162eed7232040f5b8357c0cb647ed98
90 N79899e559d7a4343a7a48bc3ab79ca7c rdf:first sg:person.01337053064.29
91 rdf:rest Ne7bfe1f63c1644fb98cc946942cd8cec
92 N86c46b7f713747eda04229d01608b757 schema:volumeNumber 52
93 rdf:type schema:PublicationVolume
94 N90128c8c130e474f9ba3618f9e2ebf55 rdf:first sg:person.01167540036.05
95 rdf:rest N79899e559d7a4343a7a48bc3ab79ca7c
96 Nb248d99e6dbe432f9f5b635c67e6053f schema:name doi
97 schema:value 10.1007/s11517-013-1123-9
98 rdf:type schema:PropertyValue
99 Nb3f1540b64fa4d40a9b6bc9a4f5ca2b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 Nc30d2f401f004cd7ba0218f02a5abc9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Electroencephalography
104 rdf:type schema:DefinedTerm
105 Nc861737d0dd748d6b7b650b367710f0b schema:name nlm_unique_id
106 schema:value 7704869
107 rdf:type schema:PropertyValue
108 Nd94d54f9b8ee4759a8376944b41e0002 schema:name pubmed_id
109 schema:value 24165805
110 rdf:type schema:PropertyValue
111 Ndd762580ef6e48fa89e177e8e25f72a8 schema:name readcube_id
112 schema:value 3d6d23f56b5760626a7cec1672c5a6aee2861747299880bccaaf4608d7c6cead
113 rdf:type schema:PropertyValue
114 Ne7bfe1f63c1644fb98cc946942cd8cec rdf:first sg:person.010726132604.03
115 rdf:rest rdf:nil
116 Nf162eed7232040f5b8357c0cb647ed98 rdf:first sg:person.01121424636.87
117 rdf:rest N90128c8c130e474f9ba3618f9e2ebf55
118 Nf657316bd7a443ad9226a764d101f6ad schema:issueNumber 2
119 rdf:type schema:PublicationIssue
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
124 schema:name Artificial Intelligence and Image Processing
125 rdf:type schema:DefinedTerm
126 sg:journal.1005585 schema:issn 1357-5481
127 1741-0444
128 schema:name Medical & Biological Engineering & Computing
129 rdf:type schema:Periodical
130 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
131 schema:familyName Tibarewala
132 schema:givenName D. N.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
134 rdf:type schema:Person
135 sg:person.01121424636.87 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
136 schema:familyName Sengupta
137 schema:givenName Abhronil
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121424636.87
139 rdf:type schema:Person
140 sg:person.01167540036.05 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
141 schema:familyName Chakraborti
142 schema:givenName Tathagatha
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167540036.05
144 rdf:type schema:Person
145 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
146 schema:familyName Konar
147 schema:givenName Amit
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
149 rdf:type schema:Person
150 sg:person.07421667055.72 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
151 schema:familyName Bhattacharyya
152 schema:givenName Saugat
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72
154 rdf:type schema:Person
155 sg:pub.10.1007/11550822_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040626103
156 https://doi.org/10.1007/11550822_8
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/3-540-30672-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012480796
159 https://doi.org/10.1007/3-540-30672-2_4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
162 https://doi.org/10.1007/978-1-4757-2440-0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/978-3-540-87559-8_95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044516094
165 https://doi.org/10.1007/978-3-540-87559-8_95
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s10044-004-0218-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012721897
168 https://doi.org/10.1007/s10044-004-0218-1
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11517-006-0107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021277335
171 https://doi.org/10.1007/s11517-006-0107-4
172 rdf:type schema:CreativeWork
173 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
174 https://doi.org/10.1023/a:1008202821328
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1743-0003-7-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041127871
177 https://doi.org/10.1186/1743-0003-7-60
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/wics.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012628338
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0165-1684(94)90029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027445618
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.clinph.2008.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034268827
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.eswa.2009.11.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027240461
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.neucom.2011.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039507510
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0925-2312(03)00433-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013938052
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/1741-2560/4/2/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053010107
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/wco.0b013e328315ee2d schema:sameAs https://app.dimensions.ai/details/publication/pub.1023761259
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/86.712230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061241319
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/ccdc.2009.5192711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093319262
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/cec.2012.6256574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093579164
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/iembs.2008.4650206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077839656
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/iembs.2010.5627178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078305605
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/iembs.2011.6091728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078504071
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/iembs.2011.6091898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078504139
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/isda.2010.5687156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093535249
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/mci.2010.936309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392382
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/mis.2008.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061406065
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tbme.2004.827088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526119
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tnsre.2003.810426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739956
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tnsre.2003.814454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739986
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tro.2012.2201310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785409
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tsmc.1974.5408453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792756
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tsmca.2007.909595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795328
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1155/2007/23864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038095683
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1162/089976698300017197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132543
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1162/089976698300017467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671707
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3389/fnins.2010.00034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023769110
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
236 schema:name Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India
237 School of Bioscience and Engineering, Jadavpur University, 700032, Kolkata, India
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...