Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Saugat Bhattacharyya, Abhronil Sengupta, Tathagatha Chakraborti, Amit Konar, D. N. Tibarewala

ABSTRACT

Brain-computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest. More... »

PAGES

131-139

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9

DOI

http://dx.doi.org/10.1007/s11517-013-1123-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012893991

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24165805


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain-Computer Interfaces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Saugat", 
        "id": "sg:person.07421667055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sengupta", 
        "givenName": "Abhronil", 
        "id": "sg:person.01121424636.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121424636.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborti", 
        "givenName": "Tathagatha", 
        "id": "sg:person.01167540036.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167540036.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibarewala", 
        "givenName": "D. N.", 
        "id": "sg:person.010726132604.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-30672-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012480796", 
          "https://doi.org/10.1007/3-540-30672-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wics.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012628338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-004-0218-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012721897", 
          "https://doi.org/10.1007/s10044-004-0218-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00433-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013938052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(03)00433-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013938052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-006-0107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021277335", 
          "https://doi.org/10.1007/s11517-006-0107-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e328315ee2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023761259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e328315ee2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023761259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e328315ee2d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023761259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2010.00034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023769110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.11.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027240461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2008.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034268827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2007/23864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038095683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039507510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11550822_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040626103", 
          "https://doi.org/10.1007/11550822_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11550822_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040626103", 
          "https://doi.org/10.1007/11550822_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-7-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041127871", 
          "https://doi.org/10.1186/1743-0003-7-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87559-8_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044516094", 
          "https://doi.org/10.1007/978-3-540-87559-8_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87559-8_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044516094", 
          "https://doi.org/10.1007/978-3-540-87559-8_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/4/2/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053010107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053132543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/86.712230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061241319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mci.2010.936309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061392382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mis.2008.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061406065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.827088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2003.810426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061739956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2003.814454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061739986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2012.2201310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1974.5408453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2007.909595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2008.4650206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077839656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2010.5627178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078305605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078504071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2011.6091898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078504139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccdc.2009.5192711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093319262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2010.5687156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093535249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2012.6256574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093579164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "Brain-computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11517-013-1123-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata", 
    "pagination": "131-139", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d6d23f56b5760626a7cec1672c5a6aee2861747299880bccaaf4608d7c6cead"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24165805"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11517-013-1123-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012893991"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11517-013-1123-9", 
      "https://app.dimensions.ai/details/publication/pub.1012893991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11517-013-1123-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-013-1123-9'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      71 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11517-013-1123-9 schema:about N2398bcca34534bdba3a81b6c07e780a8
2 Na27c32f1b3d4445c88899e8475c0ba9b
3 Nbbdcf35c13624285a07ffcef8824b74f
4 Ne77ff7c91f9c4751b2ce21dfea98800a
5 Neb4a8497522e47eb9cacf4032969903c
6 Nf373fa534af34a00b74fb663a230fc03
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author N355708020a4c4b6ca576ed932a6f884c
10 schema:citation sg:pub.10.1007/11550822_8
11 sg:pub.10.1007/3-540-30672-2_4
12 sg:pub.10.1007/978-1-4757-2440-0
13 sg:pub.10.1007/978-3-540-87559-8_95
14 sg:pub.10.1007/s10044-004-0218-1
15 sg:pub.10.1007/s11517-006-0107-4
16 sg:pub.10.1023/a:1008202821328
17 sg:pub.10.1186/1743-0003-7-60
18 https://doi.org/10.1002/wics.101
19 https://doi.org/10.1016/0165-1684(94)90029-9
20 https://doi.org/10.1016/j.clinph.2008.06.001
21 https://doi.org/10.1016/j.eswa.2009.11.064
22 https://doi.org/10.1016/j.neucom.2011.06.026
23 https://doi.org/10.1016/s0925-2312(03)00433-8
24 https://doi.org/10.1088/1741-2560/4/2/r01
25 https://doi.org/10.1097/wco.0b013e328315ee2d
26 https://doi.org/10.1109/86.712230
27 https://doi.org/10.1109/ccdc.2009.5192711
28 https://doi.org/10.1109/cec.2012.6256574
29 https://doi.org/10.1109/iembs.2008.4650206
30 https://doi.org/10.1109/iembs.2010.5627178
31 https://doi.org/10.1109/iembs.2011.6091728
32 https://doi.org/10.1109/iembs.2011.6091898
33 https://doi.org/10.1109/isda.2010.5687156
34 https://doi.org/10.1109/mci.2010.936309
35 https://doi.org/10.1109/mis.2008.41
36 https://doi.org/10.1109/tbme.2004.827088
37 https://doi.org/10.1109/tnsre.2003.810426
38 https://doi.org/10.1109/tnsre.2003.814454
39 https://doi.org/10.1109/tro.2012.2201310
40 https://doi.org/10.1109/tsmc.1974.5408453
41 https://doi.org/10.1109/tsmca.2007.909595
42 https://doi.org/10.1155/2007/23864
43 https://doi.org/10.1162/089976698300017197
44 https://doi.org/10.1162/089976698300017467
45 https://doi.org/10.3389/fnins.2010.00034
46 schema:datePublished 2014-02
47 schema:datePublishedReg 2014-02-01
48 schema:description Brain-computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N9a00d84c6c82479aa21ba47aa0a42725
53 Ne5d7d8e2d8ad43b9a1d0c9bebb7bf06f
54 sg:journal.1005585
55 schema:name Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata
56 schema:pagination 131-139
57 schema:productId N72756cf7891d46279af6fbd8619e0466
58 N73a2a1696cf5415e9289e371224e6cd2
59 N7c002d620fbf4ab49d1cfa0f46eee02b
60 N8899ebc710c84c28a9dd74f7a7d0ee67
61 N95d08ff37ea041caa78c9d6143758a78
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012893991
63 https://doi.org/10.1007/s11517-013-1123-9
64 schema:sdDatePublished 2019-04-10T13:19
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N29297d1e3b594e64a8daafd74ae6e129
67 schema:url http://link.springer.com/10.1007%2Fs11517-013-1123-9
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N1106da47d1b340d18751a8921124e4c1 rdf:first sg:person.010726132604.03
72 rdf:rest rdf:nil
73 N2398bcca34534bdba3a81b6c07e780a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Brain-Computer Interfaces
75 rdf:type schema:DefinedTerm
76 N29297d1e3b594e64a8daafd74ae6e129 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N355708020a4c4b6ca576ed932a6f884c rdf:first sg:person.07421667055.72
79 rdf:rest N8ec536c89494497789dce0e8b238f821
80 N72756cf7891d46279af6fbd8619e0466 schema:name doi
81 schema:value 10.1007/s11517-013-1123-9
82 rdf:type schema:PropertyValue
83 N73a2a1696cf5415e9289e371224e6cd2 schema:name nlm_unique_id
84 schema:value 7704869
85 rdf:type schema:PropertyValue
86 N7c002d620fbf4ab49d1cfa0f46eee02b schema:name readcube_id
87 schema:value 3d6d23f56b5760626a7cec1672c5a6aee2861747299880bccaaf4608d7c6cead
88 rdf:type schema:PropertyValue
89 N87907f6442fa4fea80f10280c723fc11 rdf:first sg:person.01167540036.05
90 rdf:rest Na99efaaed4f447319c175e62bd1e896a
91 N8899ebc710c84c28a9dd74f7a7d0ee67 schema:name dimensions_id
92 schema:value pub.1012893991
93 rdf:type schema:PropertyValue
94 N8ec536c89494497789dce0e8b238f821 rdf:first sg:person.01121424636.87
95 rdf:rest N87907f6442fa4fea80f10280c723fc11
96 N95d08ff37ea041caa78c9d6143758a78 schema:name pubmed_id
97 schema:value 24165805
98 rdf:type schema:PropertyValue
99 N9a00d84c6c82479aa21ba47aa0a42725 schema:volumeNumber 52
100 rdf:type schema:PublicationVolume
101 Na27c32f1b3d4445c88899e8475c0ba9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Algorithms
103 rdf:type schema:DefinedTerm
104 Na99efaaed4f447319c175e62bd1e896a rdf:first sg:person.01337053064.29
105 rdf:rest N1106da47d1b340d18751a8921124e4c1
106 Nbbdcf35c13624285a07ffcef8824b74f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Humans
108 rdf:type schema:DefinedTerm
109 Ne5d7d8e2d8ad43b9a1d0c9bebb7bf06f schema:issueNumber 2
110 rdf:type schema:PublicationIssue
111 Ne77ff7c91f9c4751b2ce21dfea98800a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Artificial Intelligence
113 rdf:type schema:DefinedTerm
114 Neb4a8497522e47eb9cacf4032969903c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Pattern Recognition, Automated
116 rdf:type schema:DefinedTerm
117 Nf373fa534af34a00b74fb663a230fc03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Electroencephalography
119 rdf:type schema:DefinedTerm
120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information and Computing Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
124 schema:name Artificial Intelligence and Image Processing
125 rdf:type schema:DefinedTerm
126 sg:journal.1005585 schema:issn 1357-5481
127 1741-0444
128 schema:name Medical & Biological Engineering & Computing
129 rdf:type schema:Periodical
130 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
131 schema:familyName Tibarewala
132 schema:givenName D. N.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
134 rdf:type schema:Person
135 sg:person.01121424636.87 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
136 schema:familyName Sengupta
137 schema:givenName Abhronil
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121424636.87
139 rdf:type schema:Person
140 sg:person.01167540036.05 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
141 schema:familyName Chakraborti
142 schema:givenName Tathagatha
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167540036.05
144 rdf:type schema:Person
145 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
146 schema:familyName Konar
147 schema:givenName Amit
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
149 rdf:type schema:Person
150 sg:person.07421667055.72 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
151 schema:familyName Bhattacharyya
152 schema:givenName Saugat
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72
154 rdf:type schema:Person
155 sg:pub.10.1007/11550822_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040626103
156 https://doi.org/10.1007/11550822_8
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/3-540-30672-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012480796
159 https://doi.org/10.1007/3-540-30672-2_4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
162 https://doi.org/10.1007/978-1-4757-2440-0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/978-3-540-87559-8_95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044516094
165 https://doi.org/10.1007/978-3-540-87559-8_95
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s10044-004-0218-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012721897
168 https://doi.org/10.1007/s10044-004-0218-1
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11517-006-0107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021277335
171 https://doi.org/10.1007/s11517-006-0107-4
172 rdf:type schema:CreativeWork
173 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
174 https://doi.org/10.1023/a:1008202821328
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1743-0003-7-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041127871
177 https://doi.org/10.1186/1743-0003-7-60
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/wics.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012628338
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0165-1684(94)90029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027445618
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.clinph.2008.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034268827
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.eswa.2009.11.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027240461
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.neucom.2011.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039507510
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0925-2312(03)00433-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013938052
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/1741-2560/4/2/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053010107
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/wco.0b013e328315ee2d schema:sameAs https://app.dimensions.ai/details/publication/pub.1023761259
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/86.712230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061241319
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/ccdc.2009.5192711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093319262
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/cec.2012.6256574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093579164
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/iembs.2008.4650206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077839656
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/iembs.2010.5627178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078305605
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/iembs.2011.6091728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078504071
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/iembs.2011.6091898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078504139
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/isda.2010.5687156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093535249
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/mci.2010.936309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392382
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/mis.2008.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061406065
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tbme.2004.827088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526119
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tnsre.2003.810426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739956
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tnsre.2003.814454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739986
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tro.2012.2201310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785409
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tsmc.1974.5408453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792756
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tsmca.2007.909595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795328
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1155/2007/23864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038095683
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1162/089976698300017197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132543
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1162/089976698300017467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671707
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3389/fnins.2010.00034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023769110
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
236 schema:name Department of Electronics and Telecommunication Engineering, Jadavpur University, 700032, Kolkata, India
237 School of Bioscience and Engineering, Jadavpur University, 700032, Kolkata, India
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...