A computational method to geometric measure of biological particles and application to DNA microarray spot size estimation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-04

AUTHORS

Mingjun Zhang, Kaixuan Mao, Weimin Tao, Tzyh-Jong Tarn

ABSTRACT

Geometric measures (volume, area and length) of biological particles are of fundamental interest for biological studies. Many times, the measures are at micro-/nano-scale, and based on images of the biological particles. This paper proposes a computational method to geometric measure of biological particles. The method has been applied to DNA microarray spot size estimation. Compared with existing algorithms for microarray spot size estimation, the proposed method is computational efficient and also provides confidence probability on the measure. The contributions of this paper include a generic computational method to geometric measure of biological particles and application to DNA microarray spot size estimation. More... »

PAGES

275-279

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11517-006-0031-7

DOI

http://dx.doi.org/10.1007/s11517-006-0031-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026117736

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16937168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microarray Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Electrical and Systems Engineering, Washington University, 63130, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Mingjun", 
        "id": "sg:person.01237643552.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237643552.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electrical and Systems Engineering, Washington University, 63130, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Kaixuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Brooks Automation Inc, 95131, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Weimin", 
        "id": "sg:person.01136407722.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136407722.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electrical and Systems Engineering, Washington University, 63130, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarn", 
        "givenName": "Tzyh-Jong", 
        "id": "sg:person.011546213547.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011546213547.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gnf053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013380364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.989167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061237461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2002.806936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2003.816230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04", 
    "datePublishedReg": "2006-04-01", 
    "description": "Geometric measures (volume, area and length) of biological particles are of fundamental interest for biological studies. Many times, the measures are at micro-/nano-scale, and based on images of the biological particles. This paper proposes a computational method to geometric measure of biological particles. The method has been applied to DNA microarray spot size estimation. Compared with existing algorithms for microarray spot size estimation, the proposed method is computational efficient and also provides confidence probability on the measure. The contributions of this paper include a generic computational method to geometric measure of biological particles and application to DNA microarray spot size estimation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11517-006-0031-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005585", 
        "issn": [
          "1357-5481", 
          "1741-0444"
        ], 
        "name": "Medical & Biological Engineering & Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "A computational method to geometric measure of biological particles and application to DNA microarray spot size estimation", 
    "pagination": "275-279", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c6c8d67e12b7a2223c1b5d39d43bdf9b51fb33d90404e7b39370db5c29b1fd8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16937168"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7704869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11517-006-0031-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026117736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11517-006-0031-7", 
      "https://app.dimensions.ai/details/publication/pub.1026117736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71704_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11517-006-0031-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11517-006-0031-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11517-006-0031-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11517-006-0031-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11517-006-0031-7'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      40 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11517-006-0031-7 schema:about N2838c31d3a1e4a9ebd7574f395dd760b
2 N35d9bfc3d25c4159b30cfbbd92323fdd
3 Nc93f196cab6d4e48a403b09ad42ebf3f
4 Nd2212fc330c14c608ce5c70505184246
5 Nf654ae7361494361a267572c2a57cd57
6 Nffbdf2d3a24e4d1eb20a51d58ba722ad
7 anzsrc-for:01
8 anzsrc-for:0102
9 schema:author Naacda7a9dc43492294b7f4e9ea4a147b
10 schema:citation https://doi.org/10.1093/nar/gnf053
11 https://doi.org/10.1109/81.989167
12 https://doi.org/10.1109/tip.2003.819941
13 https://doi.org/10.1109/tnb.2002.806936
14 https://doi.org/10.1109/tnb.2003.816230
15 schema:datePublished 2006-04
16 schema:datePublishedReg 2006-04-01
17 schema:description Geometric measures (volume, area and length) of biological particles are of fundamental interest for biological studies. Many times, the measures are at micro-/nano-scale, and based on images of the biological particles. This paper proposes a computational method to geometric measure of biological particles. The method has been applied to DNA microarray spot size estimation. Compared with existing algorithms for microarray spot size estimation, the proposed method is computational efficient and also provides confidence probability on the measure. The contributions of this paper include a generic computational method to geometric measure of biological particles and application to DNA microarray spot size estimation.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nd96e2f7cbadf4d5998e0d624d7792cc9
22 Nfe544bf3b9874889b20dcbdc5f31810e
23 sg:journal.1005585
24 schema:name A computational method to geometric measure of biological particles and application to DNA microarray spot size estimation
25 schema:pagination 275-279
26 schema:productId N0177ed95c55d436980d5437cc54fb826
27 N6e2fc7b42ab844a78ababf3bf699ceaa
28 Ndcaaf2c5d3f1499d80c9928e895f08b1
29 Ne16a6bd9106d4aa583b1ad43af35c8ff
30 Ne5a50ad7a88947aa97262b241de74838
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026117736
32 https://doi.org/10.1007/s11517-006-0031-7
33 schema:sdDatePublished 2019-04-11T13:00
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Neb3abedfa98f465b92ee62b26440a873
36 schema:url http://link.springer.com/10.1007%2Fs11517-006-0031-7
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0177ed95c55d436980d5437cc54fb826 schema:name dimensions_id
41 schema:value pub.1026117736
42 rdf:type schema:PropertyValue
43 N0327cc88d92d419ea1fedf5428f3e118 schema:name Department of Electrical and Systems Engineering, Washington University, 63130, St. Louis, MO, USA
44 rdf:type schema:Organization
45 N2838c31d3a1e4a9ebd7574f395dd760b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
46 schema:name Gene Expression Profiling
47 rdf:type schema:DefinedTerm
48 N2d158713546a4dcca23104e6fd0387af schema:name Department of Electrical and Systems Engineering, Washington University, 63130, St. Louis, MO, USA
49 rdf:type schema:Organization
50 N30f6a2c8818d4148a7f19730072d08e1 schema:name Department of Electrical and Systems Engineering, Washington University, 63130, St. Louis, MO, USA
51 rdf:type schema:Organization
52 N35d9bfc3d25c4159b30cfbbd92323fdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Pattern Recognition, Automated
54 rdf:type schema:DefinedTerm
55 N6e2fc7b42ab844a78ababf3bf699ceaa schema:name doi
56 schema:value 10.1007/s11517-006-0031-7
57 rdf:type schema:PropertyValue
58 N9a0bf951369d49868d0460a2fe07d3e6 rdf:first sg:person.011546213547.32
59 rdf:rest rdf:nil
60 N9a640275b039466a97518e040cabc2d5 rdf:first sg:person.01136407722.68
61 rdf:rest N9a0bf951369d49868d0460a2fe07d3e6
62 Na9fc39f9272648b9931c3739f63da4d7 schema:name Brooks Automation Inc, 95131, San Jose, CA, USA
63 rdf:type schema:Organization
64 Naacda7a9dc43492294b7f4e9ea4a147b rdf:first sg:person.01237643552.67
65 rdf:rest Nf1f478ecc1464dc59488d89cca656b8c
66 Nc93f196cab6d4e48a403b09ad42ebf3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Humans
68 rdf:type schema:DefinedTerm
69 Nd2212fc330c14c608ce5c70505184246 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Microarray Analysis
71 rdf:type schema:DefinedTerm
72 Nd96e2f7cbadf4d5998e0d624d7792cc9 schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 Ndcaaf2c5d3f1499d80c9928e895f08b1 schema:name nlm_unique_id
75 schema:value 7704869
76 rdf:type schema:PropertyValue
77 Ne16a6bd9106d4aa583b1ad43af35c8ff schema:name pubmed_id
78 schema:value 16937168
79 rdf:type schema:PropertyValue
80 Ne5a50ad7a88947aa97262b241de74838 schema:name readcube_id
81 schema:value 7c6c8d67e12b7a2223c1b5d39d43bdf9b51fb33d90404e7b39370db5c29b1fd8
82 rdf:type schema:PropertyValue
83 Neb3abedfa98f465b92ee62b26440a873 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Neb6187b7db8241bba4f76de67ab3353a schema:affiliation N0327cc88d92d419ea1fedf5428f3e118
86 schema:familyName Mao
87 schema:givenName Kaixuan
88 rdf:type schema:Person
89 Nf1f478ecc1464dc59488d89cca656b8c rdf:first Neb6187b7db8241bba4f76de67ab3353a
90 rdf:rest N9a640275b039466a97518e040cabc2d5
91 Nf654ae7361494361a267572c2a57cd57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Oligonucleotide Array Sequence Analysis
93 rdf:type schema:DefinedTerm
94 Nfe544bf3b9874889b20dcbdc5f31810e schema:volumeNumber 44
95 rdf:type schema:PublicationVolume
96 Nffbdf2d3a24e4d1eb20a51d58ba722ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Image Interpretation, Computer-Assisted
98 rdf:type schema:DefinedTerm
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
103 schema:name Applied Mathematics
104 rdf:type schema:DefinedTerm
105 sg:journal.1005585 schema:issn 1357-5481
106 1741-0444
107 schema:name Medical & Biological Engineering & Computing
108 rdf:type schema:Periodical
109 sg:person.01136407722.68 schema:affiliation Na9fc39f9272648b9931c3739f63da4d7
110 schema:familyName Tao
111 schema:givenName Weimin
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136407722.68
113 rdf:type schema:Person
114 sg:person.011546213547.32 schema:affiliation N2d158713546a4dcca23104e6fd0387af
115 schema:familyName Tarn
116 schema:givenName Tzyh-Jong
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011546213547.32
118 rdf:type schema:Person
119 sg:person.01237643552.67 schema:affiliation N30f6a2c8818d4148a7f19730072d08e1
120 schema:familyName Zhang
121 schema:givenName Mingjun
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237643552.67
123 rdf:type schema:Person
124 https://doi.org/10.1093/nar/gnf053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013380364
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/81.989167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061237461
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tip.2003.819941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640968
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tnb.2002.806936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713563
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tnb.2003.816230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713601
133 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...