Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

B. P. Tolochko, A. P. Chernyshev, K. A. Ten, E. R. Pruuel, I. L. Zhogin, P. I. Zubkov, N. Z. Lyakhov, L. A. Luk’yanchikov, M. A. Sheromov

ABSTRACT

We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30–200 Å. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 Å thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of ∼10−3 s, which is greater by a factor of ∼103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a “particle” will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the “building material” is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents. More... »

PAGES

134-140

References to SciGraph publications

  • 2003-11. Shock‐Wave Compression of Carbonyl Compounds in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1969-07. Generalized shock hugoniot of condensed substances in JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11508-008-2005-5

    DOI

    http://dx.doi.org/10.1007/s11508-008-2005-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032976435


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Solid State Chemistry and Mechanochemistry", 
              "id": "https://www.grid.ac/institutes/grid.435414.3", 
              "name": [
                "Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Akad. Kutateladze 18, 630128, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tolochko", 
            "givenName": "B. P.", 
            "id": "sg:person.015554474725.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015554474725.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Novosibirsk State Technical University", 
              "id": "https://www.grid.ac/institutes/grid.77667.37", 
              "name": [
                "Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Akad. Kutateladze 18, 630128, Novosibirsk, Russia", 
                "Novosibirsk State Technical University, pr. Karla Marksa 20, 630092, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chernyshev", 
            "givenName": "A. P.", 
            "id": "sg:person.013216402617.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216402617.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Lavrent\u2019ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 15, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ten", 
            "givenName": "K. A.", 
            "id": "sg:person.010332144017.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332144017.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Lavrent\u2019ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 15, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pruuel", 
            "givenName": "E. R.", 
            "id": "sg:person.015442254217.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442254217.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Solid State Chemistry and Mechanochemistry", 
              "id": "https://www.grid.ac/institutes/grid.435414.3", 
              "name": [
                "Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Akad. Kutateladze 18, 630128, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhogin", 
            "givenName": "I. L.", 
            "id": "sg:person.014523246571.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523246571.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Lavrent\u2019ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 15, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zubkov", 
            "givenName": "P. I.", 
            "id": "sg:person.07602676617.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602676617.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Solid State Chemistry and Mechanochemistry", 
              "id": "https://www.grid.ac/institutes/grid.435414.3", 
              "name": [
                "Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Akad. Kutateladze 18, 630128, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lyakhov", 
            "givenName": "N. Z.", 
            "id": "sg:person.01165546505.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165546505.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Lavrent\u2019ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 15, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luk\u2019yanchikov", 
            "givenName": "L. A.", 
            "id": "sg:person.013166770325.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166770325.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Budker Institute of Nuclear Physics", 
              "id": "https://www.grid.ac/institutes/grid.418495.5", 
              "name": [
                "Budker Institute for Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sheromov", 
            "givenName": "M. A.", 
            "id": "sg:person.012274405057.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274405057.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00916231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030340062", 
              "https://doi.org/10.1007/bf00916231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:cesw.0000007686.33452.1f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045979044", 
              "https://doi.org/10.1023/b:cesw.0000007686.33452.1f"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2195347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057845480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.322870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057921441"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-02", 
        "datePublishedReg": "2008-02-01", 
        "description": "We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30\u2013200 \u00c5. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 \u00c5 thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of \u223c10\u22123 s, which is greater by a factor of \u223c103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a \u201cparticle\u201d will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the \u201cbuilding material\u201d is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11508-008-2005-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295452", 
            "issn": [
              "0015-3230", 
              "0031-918X"
            ], 
            "name": "Physics of Metals and Metallography", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "105"
          }
        ], 
        "name": "Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates", 
        "pagination": "134-140", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9d185d45e2ff4be6fa3912701e890a086510d4ee32094fd10a36ed36ef5947a9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11508-008-2005-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032976435"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11508-008-2005-5", 
          "https://app.dimensions.ai/details/publication/pub.1032976435"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000533.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11508-008-2005-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11508-008-2005-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11508-008-2005-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11508-008-2005-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11508-008-2005-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11508-008-2005-5 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N06499ef3e9e24d2cb3cfa183ae0cc11b
    4 schema:citation sg:pub.10.1007/bf00916231
    5 sg:pub.10.1023/b:cesw.0000007686.33452.1f
    6 https://doi.org/10.1063/1.2195347
    7 https://doi.org/10.1063/1.322870
    8 schema:datePublished 2008-02
    9 schema:datePublishedReg 2008-02-01
    10 schema:description We have shown previously that when metal carboxylates are subjected to a shock-wave action, diamond nanoparticles and nanoparticles of metals (Ag, Bi, Co, Fe, Pb) are formed and their characteristic size is about 30–200 Å. The metal nanoparticles formed are covered by an amorphous-carbon layer up to 20 Å thick. In this work we put forward a physicochemical model of the formation of diamond and metal nanoparticles from metal carboxylates upon shock-wave action. The energy released upon detonation inside the precursor is lower than in regions not occupied by the stearates. The characteristic time of temperature equalization has been estimated to be on the order of ∼10−3 s, which is greater by a factor of ∼103 than the characteristic reaction time. Due to the adiabatic nature of the processes occurring, the typical temperature of a “particle” will be lower than the temperature of the surrounding medium. In the framework of the model suggested, it has been assumed that the growth of metal clusters should occur by the diffusion mechanism; i.e., the “building material” is supplied through diffusion. The calculation using our previous experimental data on the reaction time and average size of metal particles has shown that the diffusion properties of the medium in which the metal nanoparticles are formed are close to those of the liquid state of the substance. The temperature and pressure under detonation conditions markedly exceed the analogous parameters characteristic of experiments on the thermodestruction of metal carboxylates. The small time of existence of the reaction mixture is compensated by the high mobility and concentration of reagents.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N1aa1f03892564301ab47e6d968ccb4a7
    15 N53259beb0104409383211f5e9652fb57
    16 sg:journal.1295452
    17 schema:name Physicochemical model of detonation synthesis of nanoparticles from metal carboxylates
    18 schema:pagination 134-140
    19 schema:productId N01c76372cc924979a8ce30eb1b5212ed
    20 N9dad14af7f6e4a90a5fa631b2de2812c
    21 Nfbf790fd07eb4f6a94abca1947f650f3
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032976435
    23 https://doi.org/10.1007/s11508-008-2005-5
    24 schema:sdDatePublished 2019-04-10T19:13
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N132ddd62e6db43d49eb64c468e2b5375
    27 schema:url http://link.springer.com/10.1007%2Fs11508-008-2005-5
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N01c76372cc924979a8ce30eb1b5212ed schema:name dimensions_id
    32 schema:value pub.1032976435
    33 rdf:type schema:PropertyValue
    34 N04141d36339243aab998861577a5d294 rdf:first sg:person.01165546505.28
    35 rdf:rest N475e73dccd5a42629e273c24ce664716
    36 N063f9c5fd05048e3b8bec367590076d6 rdf:first sg:person.07602676617.09
    37 rdf:rest N04141d36339243aab998861577a5d294
    38 N06499ef3e9e24d2cb3cfa183ae0cc11b rdf:first sg:person.015554474725.11
    39 rdf:rest N7d69dc6c643a402c9142dce9b4d93601
    40 N132ddd62e6db43d49eb64c468e2b5375 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N1aa1f03892564301ab47e6d968ccb4a7 schema:issueNumber 2
    43 rdf:type schema:PublicationIssue
    44 N313961fc8257423985a6c40682682832 rdf:first sg:person.014523246571.82
    45 rdf:rest N063f9c5fd05048e3b8bec367590076d6
    46 N475e73dccd5a42629e273c24ce664716 rdf:first sg:person.013166770325.73
    47 rdf:rest N863e287116a2447183e357336cba4a57
    48 N53259beb0104409383211f5e9652fb57 schema:volumeNumber 105
    49 rdf:type schema:PublicationVolume
    50 N7d69dc6c643a402c9142dce9b4d93601 rdf:first sg:person.013216402617.22
    51 rdf:rest N95f430a7c8554de7b3d694a656d6b221
    52 N863e287116a2447183e357336cba4a57 rdf:first sg:person.012274405057.06
    53 rdf:rest rdf:nil
    54 N95f430a7c8554de7b3d694a656d6b221 rdf:first sg:person.010332144017.30
    55 rdf:rest Nd69afe9918da41f98c07f54225a31ae2
    56 N9dad14af7f6e4a90a5fa631b2de2812c schema:name doi
    57 schema:value 10.1007/s11508-008-2005-5
    58 rdf:type schema:PropertyValue
    59 Nd69afe9918da41f98c07f54225a31ae2 rdf:first sg:person.015442254217.63
    60 rdf:rest N313961fc8257423985a6c40682682832
    61 Nfbf790fd07eb4f6a94abca1947f650f3 schema:name readcube_id
    62 schema:value 9d185d45e2ff4be6fa3912701e890a086510d4ee32094fd10a36ed36ef5947a9
    63 rdf:type schema:PropertyValue
    64 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Chemical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Physical Chemistry (incl. Structural)
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1295452 schema:issn 0015-3230
    71 0031-918X
    72 schema:name Physics of Metals and Metallography
    73 rdf:type schema:Periodical
    74 sg:person.010332144017.30 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    75 schema:familyName Ten
    76 schema:givenName K. A.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332144017.30
    78 rdf:type schema:Person
    79 sg:person.01165546505.28 schema:affiliation https://www.grid.ac/institutes/grid.435414.3
    80 schema:familyName Lyakhov
    81 schema:givenName N. Z.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165546505.28
    83 rdf:type schema:Person
    84 sg:person.012274405057.06 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
    85 schema:familyName Sheromov
    86 schema:givenName M. A.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274405057.06
    88 rdf:type schema:Person
    89 sg:person.013166770325.73 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    90 schema:familyName Luk’yanchikov
    91 schema:givenName L. A.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166770325.73
    93 rdf:type schema:Person
    94 sg:person.013216402617.22 schema:affiliation https://www.grid.ac/institutes/grid.77667.37
    95 schema:familyName Chernyshev
    96 schema:givenName A. P.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216402617.22
    98 rdf:type schema:Person
    99 sg:person.014523246571.82 schema:affiliation https://www.grid.ac/institutes/grid.435414.3
    100 schema:familyName Zhogin
    101 schema:givenName I. L.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523246571.82
    103 rdf:type schema:Person
    104 sg:person.015442254217.63 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    105 schema:familyName Pruuel
    106 schema:givenName E. R.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442254217.63
    108 rdf:type schema:Person
    109 sg:person.015554474725.11 schema:affiliation https://www.grid.ac/institutes/grid.435414.3
    110 schema:familyName Tolochko
    111 schema:givenName B. P.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015554474725.11
    113 rdf:type schema:Person
    114 sg:person.07602676617.09 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    115 schema:familyName Zubkov
    116 schema:givenName P. I.
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602676617.09
    118 rdf:type schema:Person
    119 sg:pub.10.1007/bf00916231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030340062
    120 https://doi.org/10.1007/bf00916231
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1023/b:cesw.0000007686.33452.1f schema:sameAs https://app.dimensions.ai/details/publication/pub.1045979044
    123 https://doi.org/10.1023/b:cesw.0000007686.33452.1f
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1063/1.2195347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845480
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1063/1.322870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057921441
    128 rdf:type schema:CreativeWork
    129 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
    130 schema:name Budker Institute for Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 11, 630090, Novosibirsk, Russia
    131 rdf:type schema:Organization
    132 https://www.grid.ac/institutes/grid.435414.3 schema:alternateName Institute of Solid State Chemistry and Mechanochemistry
    133 schema:name Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Akad. Kutateladze 18, 630128, Novosibirsk, Russia
    134 rdf:type schema:Organization
    135 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    136 schema:name Lavrent’ev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 15, 630090, Novosibirsk, Russia
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.77667.37 schema:alternateName Novosibirsk State Technical University
    139 schema:name Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Akad. Kutateladze 18, 630128, Novosibirsk, Russia
    140 Novosibirsk State Technical University, pr. Karla Marksa 20, 630092, Novosibirsk, Russia
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...