Modeling of a Graphene Nanoribbon–based Microfluidic Surface Plasmon Resonance Biosensor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-15

AUTHORS

Carlos Angulo Barrios

ABSTRACT

A surface plasmon resonance (SPR) biosensor based on a graphene nanoribbon array in a microfluidic flow cell operating in a flow-over format is studied. The optical response of the biosensor is numerically obtained by using rigorous couple wave analysis (RCWA). The performance of the biosensor is described in terms of the limit of detection, which is calculated as a function of key nanoribbon dimensional parameters, such as strip thickness and width, and fill fraction (nanoribbon width to array period ratio). The analysis shows that there are specific values of the fill fraction that optimize, that is, minimize, the limit of detection for particular nanoribbon dimensions. Fabrication issues are also discussed. This study is expected to assist in the design and implementation of SPR biosensors based on nanopatterned 2D materials. More... »

PAGES

745-752

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-021-01573-9

DOI

http://dx.doi.org/10.1007/s11468-021-01573-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143897342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Photonics and Bioengineering, CEMDATIC, ETSI Telecomunicaci\u00f3n, Universidad Polit\u00e9cnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Department of Photonics and Bioengineering, CEMDATIC, ETSI Telecomunicaci\u00f3n, Universidad Polit\u00e9cnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barrios", 
        "givenName": "Carlos Angulo", 
        "id": "sg:person.01277434731.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277434731.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0048317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085164077", 
          "https://doi.org/10.1007/bfb0048317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep28190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044996422", 
          "https://doi.org/10.1038/srep28190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-017-0511-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014949837", 
          "https://doi.org/10.1007/s11468-017-0511-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-37825-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028255731", 
          "https://doi.org/10.1007/0-387-37825-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003521282", 
          "https://doi.org/10.1038/nchem.719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-020-01122-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124277789", 
          "https://doi.org/10.1007/s11468-020-01122-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042615843", 
          "https://doi.org/10.1038/nature09211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023339848", 
          "https://doi.org/10.1038/ncomms4189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-15", 
    "datePublishedReg": "2021-12-15", 
    "description": "A surface plasmon resonance (SPR) biosensor based on a graphene nanoribbon array in a microfluidic flow cell operating in a flow-over format is studied. The optical response of the biosensor is numerically obtained by using rigorous couple wave analysis (RCWA). The performance of the biosensor is described in terms of the limit of detection, which is calculated as a function of key nanoribbon dimensional parameters, such as strip thickness and width, and fill fraction (nanoribbon width to array period ratio). The analysis shows that there are specific values of the fill fraction that optimize, that is, minimize, the limit of detection for particular nanoribbon dimensions. Fabrication issues are also discussed. This study is expected to assist in the design and implementation of SPR biosensors based on nanopatterned 2D materials.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-021-01573-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "surface plasmon resonance biosensor", 
      "plasmon resonance biosensor", 
      "rigorous coupled-wave analysis", 
      "resonance biosensor", 
      "limit of detection", 
      "graphene nanoribbon arrays", 
      "microfluidic flow cell", 
      "SPR biosensor", 
      "nanoribbon arrays", 
      "coupled-wave analysis", 
      "graphene nanoribbons", 
      "biosensor", 
      "fabrication issues", 
      "nanoribbon dimensions", 
      "optical response", 
      "strip thickness", 
      "fill fraction", 
      "flow cell", 
      "dimensional parameters", 
      "nanoribbons", 
      "wave analysis", 
      "detection", 
      "array", 
      "limit", 
      "specific values", 
      "thickness", 
      "performance", 
      "flow", 
      "materials", 
      "design", 
      "optimize", 
      "width", 
      "format", 
      "parameters", 
      "fraction", 
      "implementation", 
      "analysis", 
      "cells", 
      "values", 
      "issues", 
      "terms", 
      "dimensions", 
      "function", 
      "study", 
      "response"
    ], 
    "name": "Modeling of a Graphene Nanoribbon\u2013based Microfluidic Surface Plasmon Resonance Biosensor", 
    "pagination": "745-752", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143897342"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-021-01573-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-021-01573-9", 
      "https://app.dimensions.ai/details/publication/pub.1143897342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_888.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-021-01573-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01573-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01573-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01573-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01573-9'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      22 PREDICATES      79 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-021-01573-9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author N63c3c494b3b348da87167444e4a38fcd
5 schema:citation sg:pub.10.1007/0-387-37825-1
6 sg:pub.10.1007/bfb0048317
7 sg:pub.10.1007/s11468-017-0511-7
8 sg:pub.10.1007/s11468-020-01122-w
9 sg:pub.10.1038/nature09211
10 sg:pub.10.1038/nchem.719
11 sg:pub.10.1038/ncomms4189
12 sg:pub.10.1038/srep28190
13 schema:datePublished 2021-12-15
14 schema:datePublishedReg 2021-12-15
15 schema:description A surface plasmon resonance (SPR) biosensor based on a graphene nanoribbon array in a microfluidic flow cell operating in a flow-over format is studied. The optical response of the biosensor is numerically obtained by using rigorous couple wave analysis (RCWA). The performance of the biosensor is described in terms of the limit of detection, which is calculated as a function of key nanoribbon dimensional parameters, such as strip thickness and width, and fill fraction (nanoribbon width to array period ratio). The analysis shows that there are specific values of the fill fraction that optimize, that is, minimize, the limit of detection for particular nanoribbon dimensions. Fabrication issues are also discussed. This study is expected to assist in the design and implementation of SPR biosensors based on nanopatterned 2D materials.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf Nc08ea8f679314736939cf0dbc2bebdd5
20 Ne284014e09f04c77af8d1365a6f4614b
21 sg:journal.1036713
22 schema:keywords SPR biosensor
23 analysis
24 array
25 biosensor
26 cells
27 coupled-wave analysis
28 design
29 detection
30 dimensional parameters
31 dimensions
32 fabrication issues
33 fill fraction
34 flow
35 flow cell
36 format
37 fraction
38 function
39 graphene nanoribbon arrays
40 graphene nanoribbons
41 implementation
42 issues
43 limit
44 limit of detection
45 materials
46 microfluidic flow cell
47 nanoribbon arrays
48 nanoribbon dimensions
49 nanoribbons
50 optical response
51 optimize
52 parameters
53 performance
54 plasmon resonance biosensor
55 resonance biosensor
56 response
57 rigorous coupled-wave analysis
58 specific values
59 strip thickness
60 study
61 surface plasmon resonance biosensor
62 terms
63 thickness
64 values
65 wave analysis
66 width
67 schema:name Modeling of a Graphene Nanoribbon–based Microfluidic Surface Plasmon Resonance Biosensor
68 schema:pagination 745-752
69 schema:productId N1c1562e312cb4c76877891320b6c3a25
70 Neadd8036f5af4a6bbd86040b1a202acd
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143897342
72 https://doi.org/10.1007/s11468-021-01573-9
73 schema:sdDatePublished 2022-05-20T07:38
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nd388f6cf08064921bfaa2bb96c2172b0
76 schema:url https://doi.org/10.1007/s11468-021-01573-9
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N1c1562e312cb4c76877891320b6c3a25 schema:name dimensions_id
81 schema:value pub.1143897342
82 rdf:type schema:PropertyValue
83 N63c3c494b3b348da87167444e4a38fcd rdf:first sg:person.01277434731.91
84 rdf:rest rdf:nil
85 Nc08ea8f679314736939cf0dbc2bebdd5 schema:issueNumber 2
86 rdf:type schema:PublicationIssue
87 Nd388f6cf08064921bfaa2bb96c2172b0 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Ne284014e09f04c77af8d1365a6f4614b schema:volumeNumber 17
90 rdf:type schema:PublicationVolume
91 Neadd8036f5af4a6bbd86040b1a202acd schema:name doi
92 schema:value 10.1007/s11468-021-01573-9
93 rdf:type schema:PropertyValue
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
98 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
101 schema:name Other Physical Sciences
102 rdf:type schema:DefinedTerm
103 sg:journal.1036713 schema:issn 1557-1955
104 1557-1963
105 schema:name Plasmonics
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.01277434731.91 schema:affiliation grid-institutes:grid.5690.a
109 schema:familyName Barrios
110 schema:givenName Carlos Angulo
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277434731.91
112 rdf:type schema:Person
113 sg:pub.10.1007/0-387-37825-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028255731
114 https://doi.org/10.1007/0-387-37825-1
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bfb0048317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085164077
117 https://doi.org/10.1007/bfb0048317
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11468-017-0511-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014949837
120 https://doi.org/10.1007/s11468-017-0511-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11468-020-01122-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1124277789
123 https://doi.org/10.1007/s11468-020-01122-w
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature09211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042615843
126 https://doi.org/10.1038/nature09211
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nchem.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003521282
129 https://doi.org/10.1038/nchem.719
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ncomms4189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023339848
132 https://doi.org/10.1038/ncomms4189
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/srep28190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044996422
135 https://doi.org/10.1038/srep28190
136 rdf:type schema:CreativeWork
137 grid-institutes:grid.5690.a schema:alternateName Department of Photonics and Bioengineering, CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
138 schema:name Department of Photonics and Bioengineering, CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...