An Ultrahigh Narrowband Absorber Close to the Information Communication Window View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-02

AUTHORS

Wajid Ali, Shahid Iqbal, Muhib Ullah, Xiaoli Wang

ABSTRACT

In this paper, we demonstrate a plasmonic ultrahigh narrowband perfect absorber, which realizes an absorption intensity of up to 99.99% in the near-infrared electromagnetic spectrum regime. Different dimensional effects on absorption properties are studied using computer simulation technology (CST) with finite element method (FEM) solver. For both transverse electric (TE) and magnetic (TM) polarization, the absorber shows high stability over a wide range of incident angles. This ultrahigh absorption is attributed to synergy effect of magnetic resonance and surface plasmon resonance. Furthermore, the sensitivity goes to 300 nm/RIU for various refractive indices of different analytes. Our proposed absorber working wavelength is very close to the communication window of information; therefore, except for remarkable sensing abilities, it can also be well utilized in optoelectronic applications like optical switching, amplifiers, and all-optical plasmonic modulators. More... »

PAGES

709-715

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-021-01557-9

DOI

http://dx.doi.org/10.1007/s11468-021-01557-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142349842


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, CAS Center for Excellence in Nanoscience, 100190, Beijing, People\u2019s Republic of China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "Wajid", 
        "id": "sg:person.011551157636.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551157636.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Southeast University Nanjing, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Southeast University Nanjing, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iqbal", 
        "givenName": "Shahid", 
        "id": "sg:person.011206772254.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206772254.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, 310027, Hangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, 310027, Hangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ullah", 
        "givenName": "Muhib", 
        "id": "sg:person.011557301771.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557301771.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, CAS Center for Excellence in Nanoscience, 100190, Beijing, People\u2019s Republic of China", 
            "Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaoli", 
        "id": "sg:person.013416143734.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416143734.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-016-0028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079403223", 
          "https://doi.org/10.1038/s41598-016-0028-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028127334", 
          "https://doi.org/10.1038/nphoton.2016.15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020525468", 
          "https://doi.org/10.1038/nphys1804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-4813-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023755179", 
          "https://doi.org/10.1007/978-94-007-4813-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026451021", 
          "https://doi.org/10.1038/srep04988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027986716", 
          "https://doi.org/10.1038/ncomms2153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013629582", 
          "https://doi.org/10.1038/nphoton.2014.139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-02", 
    "datePublishedReg": "2021-11-02", 
    "description": "In this paper, we demonstrate a plasmonic ultrahigh narrowband perfect absorber, which realizes an absorption intensity of up to 99.99% in the near-infrared electromagnetic spectrum regime. Different dimensional effects on absorption properties are studied using computer simulation technology (CST) with finite element method (FEM) solver. For both transverse electric (TE) and magnetic (TM) polarization, the absorber shows high stability over a wide range of incident angles. This ultrahigh absorption is attributed to synergy effect of magnetic resonance and surface plasmon resonance. Furthermore, the sensitivity goes to 300\u00a0nm/RIU for various refractive indices of different analytes. Our proposed absorber working wavelength is very close to the communication window of information; therefore, except for remarkable sensing abilities, it can also be well utilized in optoelectronic applications like optical switching, amplifiers, and all-optical plasmonic modulators.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-021-01557-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8906009", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "communication window", 
      "optical plasmonic modulator", 
      "computer simulation technology", 
      "optical switching", 
      "refractive index", 
      "ultrahigh absorption", 
      "plasmonic modulator", 
      "surface plasmon resonance", 
      "working wavelength", 
      "optoelectronic applications", 
      "perfect absorber", 
      "magnetic polarization", 
      "narrowband absorber", 
      "spectrum regime", 
      "incident angle", 
      "plasmon resonance", 
      "absorption intensity", 
      "absorption properties", 
      "absorber", 
      "sensing ability", 
      "dimensional effects", 
      "finite element method solver", 
      "different analytes", 
      "high stability", 
      "resonance", 
      "RIU", 
      "wavelength", 
      "synergy effect", 
      "polarization", 
      "magnetic resonance", 
      "absorption", 
      "amplifier", 
      "method solver", 
      "window", 
      "transverse", 
      "simulation technology", 
      "regime", 
      "switching", 
      "intensity", 
      "modulator", 
      "wide range", 
      "angle", 
      "technology", 
      "analytes", 
      "properties", 
      "applications", 
      "range", 
      "stability", 
      "sensitivity", 
      "effect", 
      "solver", 
      "paper", 
      "ability", 
      "index", 
      "information"
    ], 
    "name": "An Ultrahigh Narrowband Absorber Close to the Information Communication Window", 
    "pagination": "709-715", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142349842"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-021-01557-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-021-01557-9", 
      "https://app.dimensions.ai/details/publication/pub.1142349842"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_901.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-021-01557-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01557-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01557-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01557-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01557-9'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      87 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-021-01557-9 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nfc7981d9899f449686a2905c7b1f0c25
4 schema:citation sg:pub.10.1007/978-94-007-4813-2
5 sg:pub.10.1038/ncomms2153
6 sg:pub.10.1038/nphoton.2014.139
7 sg:pub.10.1038/nphoton.2016.15
8 sg:pub.10.1038/nphys1804
9 sg:pub.10.1038/s41598-016-0028-x
10 sg:pub.10.1038/srep04988
11 schema:datePublished 2021-11-02
12 schema:datePublishedReg 2021-11-02
13 schema:description In this paper, we demonstrate a plasmonic ultrahigh narrowband perfect absorber, which realizes an absorption intensity of up to 99.99% in the near-infrared electromagnetic spectrum regime. Different dimensional effects on absorption properties are studied using computer simulation technology (CST) with finite element method (FEM) solver. For both transverse electric (TE) and magnetic (TM) polarization, the absorber shows high stability over a wide range of incident angles. This ultrahigh absorption is attributed to synergy effect of magnetic resonance and surface plasmon resonance. Furthermore, the sensitivity goes to 300 nm/RIU for various refractive indices of different analytes. Our proposed absorber working wavelength is very close to the communication window of information; therefore, except for remarkable sensing abilities, it can also be well utilized in optoelectronic applications like optical switching, amplifiers, and all-optical plasmonic modulators.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N649b6059cd6f48fcab837cfc19254540
18 Nf3dd557f926f4b96abff6cdf91a26930
19 sg:journal.1036713
20 schema:keywords RIU
21 ability
22 absorber
23 absorption
24 absorption intensity
25 absorption properties
26 amplifier
27 analytes
28 angle
29 applications
30 communication window
31 computer simulation technology
32 different analytes
33 dimensional effects
34 effect
35 finite element method solver
36 high stability
37 incident angle
38 index
39 information
40 intensity
41 magnetic polarization
42 magnetic resonance
43 method solver
44 modulator
45 narrowband absorber
46 optical plasmonic modulator
47 optical switching
48 optoelectronic applications
49 paper
50 perfect absorber
51 plasmon resonance
52 plasmonic modulator
53 polarization
54 properties
55 range
56 refractive index
57 regime
58 resonance
59 sensing ability
60 sensitivity
61 simulation technology
62 solver
63 spectrum regime
64 stability
65 surface plasmon resonance
66 switching
67 synergy effect
68 technology
69 transverse
70 ultrahigh absorption
71 wavelength
72 wide range
73 window
74 working wavelength
75 schema:name An Ultrahigh Narrowband Absorber Close to the Information Communication Window
76 schema:pagination 709-715
77 schema:productId N1a81b30defa14b7aaf7b3c075dc71960
78 N89e276f2f40a4a6699d946fb9162fb57
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142349842
80 https://doi.org/10.1007/s11468-021-01557-9
81 schema:sdDatePublished 2022-05-20T07:39
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N47bb86480d8e4d6b9cacd006584c16d9
84 schema:url https://doi.org/10.1007/s11468-021-01557-9
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N1a81b30defa14b7aaf7b3c075dc71960 schema:name dimensions_id
89 schema:value pub.1142349842
90 rdf:type schema:PropertyValue
91 N47bb86480d8e4d6b9cacd006584c16d9 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N649b6059cd6f48fcab837cfc19254540 schema:volumeNumber 17
94 rdf:type schema:PublicationVolume
95 N83f6f0f87b864a079f2c6eda8feb325b rdf:first sg:person.011557301771.33
96 rdf:rest Nf3a657aab9d6413ca14de5ae9f00ab3e
97 N89aedabb26d94921ad2ac725d25e4888 rdf:first sg:person.011206772254.38
98 rdf:rest N83f6f0f87b864a079f2c6eda8feb325b
99 N89e276f2f40a4a6699d946fb9162fb57 schema:name doi
100 schema:value 10.1007/s11468-021-01557-9
101 rdf:type schema:PropertyValue
102 Nf3a657aab9d6413ca14de5ae9f00ab3e rdf:first sg:person.013416143734.63
103 rdf:rest rdf:nil
104 Nf3dd557f926f4b96abff6cdf91a26930 schema:issueNumber 2
105 rdf:type schema:PublicationIssue
106 Nfc7981d9899f449686a2905c7b1f0c25 rdf:first sg:person.011551157636.59
107 rdf:rest N89aedabb26d94921ad2ac725d25e4888
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
112 schema:name Optical Physics
113 rdf:type schema:DefinedTerm
114 sg:grant.8906009 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-021-01557-9
115 rdf:type schema:MonetaryGrant
116 sg:journal.1036713 schema:issn 1557-1955
117 1557-1963
118 schema:name Plasmonics
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.011206772254.38 schema:affiliation grid-institutes:grid.263826.b
122 schema:familyName Iqbal
123 schema:givenName Shahid
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206772254.38
125 rdf:type schema:Person
126 sg:person.011551157636.59 schema:affiliation grid-institutes:grid.410726.6
127 schema:familyName Ali
128 schema:givenName Wajid
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551157636.59
130 rdf:type schema:Person
131 sg:person.011557301771.33 schema:affiliation grid-institutes:grid.13402.34
132 schema:familyName Ullah
133 schema:givenName Muhib
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557301771.33
135 rdf:type schema:Person
136 sg:person.013416143734.63 schema:affiliation grid-institutes:grid.410726.6
137 schema:familyName Wang
138 schema:givenName Xiaoli
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416143734.63
140 rdf:type schema:Person
141 sg:pub.10.1007/978-94-007-4813-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023755179
142 https://doi.org/10.1007/978-94-007-4813-2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ncomms2153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027986716
145 https://doi.org/10.1038/ncomms2153
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphoton.2014.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013629582
148 https://doi.org/10.1038/nphoton.2014.139
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphoton.2016.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028127334
151 https://doi.org/10.1038/nphoton.2016.15
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nphys1804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020525468
154 https://doi.org/10.1038/nphys1804
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/s41598-016-0028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079403223
157 https://doi.org/10.1038/s41598-016-0028-x
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/srep04988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026451021
160 https://doi.org/10.1038/srep04988
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.13402.34 schema:alternateName Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, 310027, Hangzhou, People’s Republic of China
163 schema:name Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, 310027, Hangzhou, People’s Republic of China
164 rdf:type schema:Organization
165 grid-institutes:grid.263826.b schema:alternateName School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Southeast University Nanjing, Nanjing, People’s Republic of China
166 schema:name School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Southeast University Nanjing, Nanjing, People’s Republic of China
167 rdf:type schema:Organization
168 grid-institutes:grid.410726.6 schema:alternateName Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, People’s Republic of China
169 schema:name CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, CAS Center for Excellence in Nanoscience, 100190, Beijing, People’s Republic of China
170 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, People’s Republic of China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...