Design of Broadband Infrared Photodetectors Enhanced by Dual-Mode Plasmonic Resonant Cavities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-12

AUTHORS

Jiayuan Du, Xinyu Zhao, Xiaodong Sun, Jinyao Zeng, Xinhua Hu

ABSTRACT

The signal-to-noise ratio of infrared photodetectors can be improved by using resonant cavities, whereas the enhancement effect usually occurs in a narrow wavelength range. Here, we propose a dual-mode plasmonic resonant cavity which can enhance the performance of infrared photodetectors in a wide range of wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m. The optical cavity consists of an Au grating, an ultrathin (310 nm) detective layer of mercury cadmium telluride, and an Au film, which can exhibit nearly perfect absorption at resonant wavelengths with using optimal parameters. For wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m, the wavelength-averaged absorption in the detective layer can also be 62%, about 12 times of that without the resonant cavity. Such a high enhancement of absorption can occur for incident light in a broad range of angle (θ<450\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta <45^{0}$$\end{document}) and with different polarizations. More... »

PAGES

633-638

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0

DOI

http://dx.doi.org/10.1007/s11468-021-01552-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141839367


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Jiayuan", 
        "id": "sg:person.013656503130.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656503130.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xinyu", 
        "id": "sg:person.014373061567.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373061567.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Xiaodong", 
        "id": "sg:person.015170442167.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170442167.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Jinyao", 
        "id": "sg:person.014040305614.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040305614.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peng Cheng Lab, 518000, Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/grid.508161.b", 
          "name": [
            "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China", 
            "Peng Cheng Lab, 518000, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xinhua", 
        "id": "sg:person.01153120404.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153120404.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11468-014-9755-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042295144", 
          "https://doi.org/10.1007/s11468-014-9755-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-12", 
    "datePublishedReg": "2021-10-12", 
    "description": "The signal-to-noise ratio of infrared photodetectors can be improved by using resonant cavities, whereas the enhancement effect usually occurs in a narrow wavelength range. Here, we propose a dual-mode plasmonic resonant cavity which can enhance the performance of infrared photodetectors in a wide range of wavelengths from 3.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m to 5.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m. The optical cavity consists of an Au grating, an ultrathin (310 nm) detective layer of mercury cadmium telluride, and an Au film, which can exhibit nearly perfect absorption at resonant wavelengths with using optimal parameters. For wavelengths from 3.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m to 5.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m, the wavelength-averaged absorption in the detective layer can also be 62%, about 12 times of that without the resonant cavity. Such a high enhancement of absorption can occur for incident light in a broad range of angle (\u03b8<450\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\theta <45^{0}$$\\end{document}) and with different polarizations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-021-01552-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8296673", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8124718", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "plasmonic resonant cavity", 
      "infrared photodetectors", 
      "detective layer", 
      "resonant cavity", 
      "narrow wavelength range", 
      "resonant wavelength", 
      "Au grating", 
      "Au film", 
      "perfect absorption", 
      "wavelength range", 
      "photodetectors", 
      "incident light", 
      "optical cavity", 
      "noise ratio", 
      "highest enhancement", 
      "wavelength", 
      "enhancement effect", 
      "different polarizations", 
      "layer", 
      "grating", 
      "absorption", 
      "broad range", 
      "mercury cadmium", 
      "films", 
      "range", 
      "wide range", 
      "cavity", 
      "enhancement", 
      "performance", 
      "signals", 
      "optimal parameters", 
      "polarization", 
      "light", 
      "design", 
      "ratio", 
      "angle", 
      "parameters", 
      "time", 
      "effect", 
      "cadmium"
    ], 
    "name": "Design of Broadband Infrared Photodetectors Enhanced by Dual-Mode Plasmonic Resonant Cavities", 
    "pagination": "633-638", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141839367"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-021-01552-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-021-01552-0", 
      "https://app.dimensions.ai/details/publication/pub.1141839367"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_915.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-021-01552-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      66 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-021-01552-0 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N3ff01b657b3f4834abe0284e6efc3b74
4 schema:citation sg:pub.10.1007/s11468-014-9755-7
5 schema:datePublished 2021-10-12
6 schema:datePublishedReg 2021-10-12
7 schema:description The signal-to-noise ratio of infrared photodetectors can be improved by using resonant cavities, whereas the enhancement effect usually occurs in a narrow wavelength range. Here, we propose a dual-mode plasmonic resonant cavity which can enhance the performance of infrared photodetectors in a wide range of wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m. The optical cavity consists of an Au grating, an ultrathin (310 nm) detective layer of mercury cadmium telluride, and an Au film, which can exhibit nearly perfect absorption at resonant wavelengths with using optimal parameters. For wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m, the wavelength-averaged absorption in the detective layer can also be 62%, about 12 times of that without the resonant cavity. Such a high enhancement of absorption can occur for incident light in a broad range of angle (θ<450\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta <45^{0}$$\end{document}) and with different polarizations.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N1bc19f8392df4fedbbcbd3520bdef72c
12 Nd7d052f08342437bb132f436025b1a3e
13 sg:journal.1036713
14 schema:keywords Au film
15 Au grating
16 absorption
17 angle
18 broad range
19 cadmium
20 cavity
21 design
22 detective layer
23 different polarizations
24 effect
25 enhancement
26 enhancement effect
27 films
28 grating
29 highest enhancement
30 incident light
31 infrared photodetectors
32 layer
33 light
34 mercury cadmium
35 narrow wavelength range
36 noise ratio
37 optical cavity
38 optimal parameters
39 parameters
40 perfect absorption
41 performance
42 photodetectors
43 plasmonic resonant cavity
44 polarization
45 range
46 ratio
47 resonant cavity
48 resonant wavelength
49 signals
50 time
51 wavelength
52 wavelength range
53 wide range
54 schema:name Design of Broadband Infrared Photodetectors Enhanced by Dual-Mode Plasmonic Resonant Cavities
55 schema:pagination 633-638
56 schema:productId Nc840f71ae4db4dcfa941b20f88b8840f
57 Nd79b06d52c9d4d8abc12793bc3285926
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141839367
59 https://doi.org/10.1007/s11468-021-01552-0
60 schema:sdDatePublished 2022-05-10T10:29
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nfbc8d007cccb4762a3c21fb139aad3b2
63 schema:url https://doi.org/10.1007/s11468-021-01552-0
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N1bc19f8392df4fedbbcbd3520bdef72c schema:volumeNumber 17
68 rdf:type schema:PublicationVolume
69 N332db3bfe3e64a4b8648afb46fab91da rdf:first sg:person.015170442167.73
70 rdf:rest Nf123632c5b704c49b07334abedb77a7b
71 N3ff01b657b3f4834abe0284e6efc3b74 rdf:first sg:person.013656503130.18
72 rdf:rest Nf95a365c8f9048dab7306022e8476fdb
73 N46206c8e4b664d1a833e2a037bc5672a rdf:first sg:person.01153120404.22
74 rdf:rest rdf:nil
75 Nc840f71ae4db4dcfa941b20f88b8840f schema:name doi
76 schema:value 10.1007/s11468-021-01552-0
77 rdf:type schema:PropertyValue
78 Nd79b06d52c9d4d8abc12793bc3285926 schema:name dimensions_id
79 schema:value pub.1141839367
80 rdf:type schema:PropertyValue
81 Nd7d052f08342437bb132f436025b1a3e schema:issueNumber 2
82 rdf:type schema:PublicationIssue
83 Nf123632c5b704c49b07334abedb77a7b rdf:first sg:person.014040305614.89
84 rdf:rest N46206c8e4b664d1a833e2a037bc5672a
85 Nf95a365c8f9048dab7306022e8476fdb rdf:first sg:person.014373061567.29
86 rdf:rest N332db3bfe3e64a4b8648afb46fab91da
87 Nfbc8d007cccb4762a3c21fb139aad3b2 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
93 schema:name Optical Physics
94 rdf:type schema:DefinedTerm
95 sg:grant.8124718 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-021-01552-0
96 rdf:type schema:MonetaryGrant
97 sg:grant.8296673 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-021-01552-0
98 rdf:type schema:MonetaryGrant
99 sg:journal.1036713 schema:issn 1557-1955
100 1557-1963
101 schema:name Plasmonics
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.01153120404.22 schema:affiliation grid-institutes:grid.508161.b
105 schema:familyName Hu
106 schema:givenName Xinhua
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153120404.22
108 rdf:type schema:Person
109 sg:person.013656503130.18 schema:affiliation grid-institutes:grid.8547.e
110 schema:familyName Du
111 schema:givenName Jiayuan
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656503130.18
113 rdf:type schema:Person
114 sg:person.014040305614.89 schema:affiliation grid-institutes:grid.8547.e
115 schema:familyName Zeng
116 schema:givenName Jinyao
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040305614.89
118 rdf:type schema:Person
119 sg:person.014373061567.29 schema:affiliation grid-institutes:grid.8547.e
120 schema:familyName Zhao
121 schema:givenName Xinyu
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373061567.29
123 rdf:type schema:Person
124 sg:person.015170442167.73 schema:affiliation grid-institutes:grid.8547.e
125 schema:familyName Sun
126 schema:givenName Xiaodong
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170442167.73
128 rdf:type schema:Person
129 sg:pub.10.1007/s11468-014-9755-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042295144
130 https://doi.org/10.1007/s11468-014-9755-7
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.508161.b schema:alternateName Peng Cheng Lab, 518000, Shenzhen, China
133 schema:name Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
134 Peng Cheng Lab, 518000, Shenzhen, China
135 rdf:type schema:Organization
136 grid-institutes:grid.8547.e schema:alternateName Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
137 schema:name Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...