Ontology type: schema:ScholarlyArticle Open Access: True
2021-10-12
AUTHORSJiayuan Du, Xinyu Zhao, Xiaodong Sun, Jinyao Zeng, Xinhua Hu
ABSTRACTThe signal-to-noise ratio of infrared photodetectors can be improved by using resonant cavities, whereas the enhancement effect usually occurs in a narrow wavelength range. Here, we propose a dual-mode plasmonic resonant cavity which can enhance the performance of infrared photodetectors in a wide range of wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m. The optical cavity consists of an Au grating, an ultrathin (310 nm) detective layer of mercury cadmium telluride, and an Au film, which can exhibit nearly perfect absorption at resonant wavelengths with using optimal parameters. For wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m, the wavelength-averaged absorption in the detective layer can also be 62%, about 12 times of that without the resonant cavity. Such a high enhancement of absorption can occur for incident light in a broad range of angle (θ<450\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta <45^{0}$$\end{document}) and with different polarizations. More... »
PAGES633-638
http://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0
DOIhttp://dx.doi.org/10.1007/s11468-021-01552-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141839367
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Optical Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.8547.e",
"name": [
"Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Du",
"givenName": "Jiayuan",
"id": "sg:person.013656503130.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656503130.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.8547.e",
"name": [
"Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Zhao",
"givenName": "Xinyu",
"id": "sg:person.014373061567.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373061567.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.8547.e",
"name": [
"Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Sun",
"givenName": "Xiaodong",
"id": "sg:person.015170442167.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170442167.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China",
"id": "http://www.grid.ac/institutes/grid.8547.e",
"name": [
"Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China"
],
"type": "Organization"
},
"familyName": "Zeng",
"givenName": "Jinyao",
"id": "sg:person.014040305614.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040305614.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Peng Cheng Lab, 518000, Shenzhen, China",
"id": "http://www.grid.ac/institutes/grid.508161.b",
"name": [
"Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China",
"Peng Cheng Lab, 518000, Shenzhen, China"
],
"type": "Organization"
},
"familyName": "Hu",
"givenName": "Xinhua",
"id": "sg:person.01153120404.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153120404.22"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11468-014-9755-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042295144",
"https://doi.org/10.1007/s11468-014-9755-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-12",
"datePublishedReg": "2021-10-12",
"description": "The signal-to-noise ratio of infrared photodetectors can be improved by using resonant cavities, whereas the enhancement effect usually occurs in a narrow wavelength range. Here, we propose a dual-mode plasmonic resonant cavity which can enhance the performance of infrared photodetectors in a wide range of wavelengths from 3.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m to 5.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m. The optical cavity consists of an Au grating, an ultrathin (310 nm) detective layer of mercury cadmium telluride, and an Au film, which can exhibit nearly perfect absorption at resonant wavelengths with using optimal parameters. For wavelengths from 3.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m to 5.5 \u03bc\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu$$\\end{document}m, the wavelength-averaged absorption in the detective layer can also be 62%, about 12 times of that without the resonant cavity. Such a high enhancement of absorption can occur for incident light in a broad range of angle (\u03b8<450\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\theta <45^{0}$$\\end{document}) and with different polarizations.",
"genre": "article",
"id": "sg:pub.10.1007/s11468-021-01552-0",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8296673",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8124718",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1036713",
"issn": [
"1557-1955",
"1557-1963"
],
"name": "Plasmonics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"keywords": [
"plasmonic resonant cavity",
"infrared photodetectors",
"detective layer",
"resonant cavity",
"narrow wavelength range",
"resonant wavelength",
"Au grating",
"Au film",
"perfect absorption",
"wavelength range",
"photodetectors",
"incident light",
"optical cavity",
"noise ratio",
"highest enhancement",
"wavelength",
"enhancement effect",
"different polarizations",
"layer",
"grating",
"absorption",
"broad range",
"mercury cadmium",
"films",
"range",
"wide range",
"cavity",
"enhancement",
"performance",
"signals",
"optimal parameters",
"polarization",
"light",
"design",
"ratio",
"angle",
"parameters",
"time",
"effect",
"cadmium"
],
"name": "Design of Broadband Infrared Photodetectors Enhanced by Dual-Mode Plasmonic Resonant Cavities",
"pagination": "633-638",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141839367"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11468-021-01552-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11468-021-01552-0",
"https://app.dimensions.ai/details/publication/pub.1141839367"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_915.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11468-021-01552-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01552-0'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
22 PREDICATES
66 URIs
57 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11468-021-01552-0 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0205 |
3 | ″ | schema:author | N3ff01b657b3f4834abe0284e6efc3b74 |
4 | ″ | schema:citation | sg:pub.10.1007/s11468-014-9755-7 |
5 | ″ | schema:datePublished | 2021-10-12 |
6 | ″ | schema:datePublishedReg | 2021-10-12 |
7 | ″ | schema:description | The signal-to-noise ratio of infrared photodetectors can be improved by using resonant cavities, whereas the enhancement effect usually occurs in a narrow wavelength range. Here, we propose a dual-mode plasmonic resonant cavity which can enhance the performance of infrared photodetectors in a wide range of wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m. The optical cavity consists of an Au grating, an ultrathin (310 nm) detective layer of mercury cadmium telluride, and an Au film, which can exhibit nearly perfect absorption at resonant wavelengths with using optimal parameters. For wavelengths from 3.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m to 5.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document}m, the wavelength-averaged absorption in the detective layer can also be 62%, about 12 times of that without the resonant cavity. Such a high enhancement of absorption can occur for incident light in a broad range of angle (θ<450\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta <45^{0}$$\end{document}) and with different polarizations. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N1bc19f8392df4fedbbcbd3520bdef72c |
12 | ″ | ″ | Nd7d052f08342437bb132f436025b1a3e |
13 | ″ | ″ | sg:journal.1036713 |
14 | ″ | schema:keywords | Au film |
15 | ″ | ″ | Au grating |
16 | ″ | ″ | absorption |
17 | ″ | ″ | angle |
18 | ″ | ″ | broad range |
19 | ″ | ″ | cadmium |
20 | ″ | ″ | cavity |
21 | ″ | ″ | design |
22 | ″ | ″ | detective layer |
23 | ″ | ″ | different polarizations |
24 | ″ | ″ | effect |
25 | ″ | ″ | enhancement |
26 | ″ | ″ | enhancement effect |
27 | ″ | ″ | films |
28 | ″ | ″ | grating |
29 | ″ | ″ | highest enhancement |
30 | ″ | ″ | incident light |
31 | ″ | ″ | infrared photodetectors |
32 | ″ | ″ | layer |
33 | ″ | ″ | light |
34 | ″ | ″ | mercury cadmium |
35 | ″ | ″ | narrow wavelength range |
36 | ″ | ″ | noise ratio |
37 | ″ | ″ | optical cavity |
38 | ″ | ″ | optimal parameters |
39 | ″ | ″ | parameters |
40 | ″ | ″ | perfect absorption |
41 | ″ | ″ | performance |
42 | ″ | ″ | photodetectors |
43 | ″ | ″ | plasmonic resonant cavity |
44 | ″ | ″ | polarization |
45 | ″ | ″ | range |
46 | ″ | ″ | ratio |
47 | ″ | ″ | resonant cavity |
48 | ″ | ″ | resonant wavelength |
49 | ″ | ″ | signals |
50 | ″ | ″ | time |
51 | ″ | ″ | wavelength |
52 | ″ | ″ | wavelength range |
53 | ″ | ″ | wide range |
54 | ″ | schema:name | Design of Broadband Infrared Photodetectors Enhanced by Dual-Mode Plasmonic Resonant Cavities |
55 | ″ | schema:pagination | 633-638 |
56 | ″ | schema:productId | Nc840f71ae4db4dcfa941b20f88b8840f |
57 | ″ | ″ | Nd79b06d52c9d4d8abc12793bc3285926 |
58 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141839367 |
59 | ″ | ″ | https://doi.org/10.1007/s11468-021-01552-0 |
60 | ″ | schema:sdDatePublished | 2022-05-10T10:29 |
61 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
62 | ″ | schema:sdPublisher | Nfbc8d007cccb4762a3c21fb139aad3b2 |
63 | ″ | schema:url | https://doi.org/10.1007/s11468-021-01552-0 |
64 | ″ | sgo:license | sg:explorer/license/ |
65 | ″ | sgo:sdDataset | articles |
66 | ″ | rdf:type | schema:ScholarlyArticle |
67 | N1bc19f8392df4fedbbcbd3520bdef72c | schema:volumeNumber | 17 |
68 | ″ | rdf:type | schema:PublicationVolume |
69 | N332db3bfe3e64a4b8648afb46fab91da | rdf:first | sg:person.015170442167.73 |
70 | ″ | rdf:rest | Nf123632c5b704c49b07334abedb77a7b |
71 | N3ff01b657b3f4834abe0284e6efc3b74 | rdf:first | sg:person.013656503130.18 |
72 | ″ | rdf:rest | Nf95a365c8f9048dab7306022e8476fdb |
73 | N46206c8e4b664d1a833e2a037bc5672a | rdf:first | sg:person.01153120404.22 |
74 | ″ | rdf:rest | rdf:nil |
75 | Nc840f71ae4db4dcfa941b20f88b8840f | schema:name | doi |
76 | ″ | schema:value | 10.1007/s11468-021-01552-0 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | Nd79b06d52c9d4d8abc12793bc3285926 | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1141839367 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nd7d052f08342437bb132f436025b1a3e | schema:issueNumber | 2 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | Nf123632c5b704c49b07334abedb77a7b | rdf:first | sg:person.014040305614.89 |
84 | ″ | rdf:rest | N46206c8e4b664d1a833e2a037bc5672a |
85 | Nf95a365c8f9048dab7306022e8476fdb | rdf:first | sg:person.014373061567.29 |
86 | ″ | rdf:rest | N332db3bfe3e64a4b8648afb46fab91da |
87 | Nfbc8d007cccb4762a3c21fb139aad3b2 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Physical Sciences |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | anzsrc-for:0205 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Optical Physics |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | sg:grant.8124718 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11468-021-01552-0 |
96 | ″ | rdf:type | schema:MonetaryGrant |
97 | sg:grant.8296673 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s11468-021-01552-0 |
98 | ″ | rdf:type | schema:MonetaryGrant |
99 | sg:journal.1036713 | schema:issn | 1557-1955 |
100 | ″ | ″ | 1557-1963 |
101 | ″ | schema:name | Plasmonics |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.01153120404.22 | schema:affiliation | grid-institutes:grid.508161.b |
105 | ″ | schema:familyName | Hu |
106 | ″ | schema:givenName | Xinhua |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153120404.22 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.013656503130.18 | schema:affiliation | grid-institutes:grid.8547.e |
110 | ″ | schema:familyName | Du |
111 | ″ | schema:givenName | Jiayuan |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656503130.18 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.014040305614.89 | schema:affiliation | grid-institutes:grid.8547.e |
115 | ″ | schema:familyName | Zeng |
116 | ″ | schema:givenName | Jinyao |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040305614.89 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.014373061567.29 | schema:affiliation | grid-institutes:grid.8547.e |
120 | ″ | schema:familyName | Zhao |
121 | ″ | schema:givenName | Xinyu |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014373061567.29 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.015170442167.73 | schema:affiliation | grid-institutes:grid.8547.e |
125 | ″ | schema:familyName | Sun |
126 | ″ | schema:givenName | Xiaodong |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170442167.73 |
128 | ″ | rdf:type | schema:Person |
129 | sg:pub.10.1007/s11468-014-9755-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042295144 |
130 | ″ | ″ | https://doi.org/10.1007/s11468-014-9755-7 |
131 | ″ | rdf:type | schema:CreativeWork |
132 | grid-institutes:grid.508161.b | schema:alternateName | Peng Cheng Lab, 518000, Shenzhen, China |
133 | ″ | schema:name | Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China |
134 | ″ | ″ | Peng Cheng Lab, 518000, Shenzhen, China |
135 | ″ | rdf:type | schema:Organization |
136 | grid-institutes:grid.8547.e | schema:alternateName | Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China |
137 | ″ | schema:name | Department of Materials Science and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China |
138 | ″ | rdf:type | schema:Organization |