Ontology type: schema:ScholarlyArticle
2021-10-07
AUTHORSAli Hajjiah, Hussein Badran, Nader Shehata, May Omran, Ishac Kandas
ABSTRACTNanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis (Jloss\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_{\mathrm{loss}}$$\end{document}), and finally, the spectral photovoltaic output (SPV). More... »
PAGES581-595
http://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x
DOIhttp://dx.doi.org/10.1007/s11468-021-01547-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141714878
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait",
"id": "http://www.grid.ac/institutes/grid.411196.a",
"name": [
"Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait"
],
"type": "Organization"
},
"familyName": "Hajjiah",
"givenName": "Ali",
"id": "sg:person.015332567031.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015332567031.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait",
"id": "http://www.grid.ac/institutes/grid.411196.a",
"name": [
"Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait"
],
"type": "Organization"
},
"familyName": "Badran",
"givenName": "Hussein",
"id": "sg:person.07743275223.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07743275223.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt",
"id": "http://www.grid.ac/institutes/grid.7155.6",
"name": [
"Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt",
"Department of Physics, Kuwait College of Science and Technology, Safat 13133, Kuwait City, Kuwait",
"Faculty of Science, USTAR Bio-Innovation Center, Utah State University, 84341, Logan, UT, USA",
"Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt"
],
"type": "Organization"
},
"familyName": "Shehata",
"givenName": "Nader",
"id": "sg:person.01203661143.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203661143.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait",
"id": "http://www.grid.ac/institutes/grid.411196.a",
"name": [
"Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait"
],
"type": "Organization"
},
"familyName": "Omran",
"givenName": "May",
"id": "sg:person.011673323200.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673323200.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt",
"id": "http://www.grid.ac/institutes/grid.7155.6",
"name": [
"Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt",
"Department of Physics, Kuwait College of Science and Technology, Safat 13133, Kuwait City, Kuwait",
"Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt"
],
"type": "Organization"
},
"familyName": "Kandas",
"givenName": "Ishac",
"id": "sg:person.01336677211.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336677211.61"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/s41566-019-0479-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1119806197",
"https://doi.org/10.1038/s41566-019-0479-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep14485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020861979",
"https://doi.org/10.1038/srep14485"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40807-017-0042-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091212905",
"https://doi.org/10.1186/s40807-017-0042-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-021-93914-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1139693242",
"https://doi.org/10.1038/s41598-021-93914-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature12509",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038126904",
"https://doi.org/10.1038/nature12509"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-07",
"datePublishedReg": "2021-10-07",
"description": "Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic\u2013inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM)\u00a0will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by\u2009~\u20097.8%, thus enhancing the optical current density by\u2009~\u200913.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis (Jloss\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${J}_{\\mathrm{loss}}$$\\end{document}), and finally, the spectral photovoltaic output (SPV).",
"genre": "article",
"id": "sg:pub.10.1007/s11468-021-01547-x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036713",
"issn": [
"1557-1955",
"1557-1963"
],
"name": "Plasmonics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"keywords": [
"semiconductor solar cells",
"solar weighted reflectance",
"solar cells",
"effective medium theory",
"AR nanostructures",
"effective refractive index",
"optical simulation method",
"moth-eye nanostructures",
"excellent antireflection properties",
"optical effects",
"optical analysis methods",
"refractive index",
"absorptance enhancement",
"optical performance",
"broadband antireflection",
"antireflection properties",
"different nanostructures",
"nanostructures",
"photovoltaic output",
"front side",
"current density",
"loss analysis",
"medium theory",
"overall efficiency",
"simulation method",
"antireflection",
"better performance",
"analysis method",
"reflectance",
"performance",
"density",
"efficiency",
"enhancement",
"properties",
"method",
"theory",
"cells",
"reflection",
"height",
"output",
"effect",
"paper",
"side",
"analysis",
"index"
],
"name": "The Effect of Different AR Nanostructures on the Optical Performance of Organic\u2013Inorganic Halide Perovskite Semiconductor Solar Cell",
"pagination": "581-595",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141714878"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11468-021-01547-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11468-021-01547-x",
"https://app.dimensions.ai/details/publication/pub.1141714878"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_915.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11468-021-01547-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'
This table displays all metadata directly associated to this object as RDF triples.
161 TRIPLES
22 PREDICATES
76 URIs
62 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11468-021-01547-x | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | ″ | anzsrc-for:0299 |
4 | ″ | schema:author | N587cc50c013d4e89867a3b9a20dbe104 |
5 | ″ | schema:citation | sg:pub.10.1038/nature12509 |
6 | ″ | ″ | sg:pub.10.1038/s41566-019-0479-2 |
7 | ″ | ″ | sg:pub.10.1038/s41598-021-93914-1 |
8 | ″ | ″ | sg:pub.10.1038/srep14485 |
9 | ″ | ″ | sg:pub.10.1186/s40807-017-0042-z |
10 | ″ | schema:datePublished | 2021-10-07 |
11 | ″ | schema:datePublishedReg | 2021-10-07 |
12 | ″ | schema:description | Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis (Jloss\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_{\mathrm{loss}}$$\end{document}), and finally, the spectral photovoltaic output (SPV). |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N00d0bbb24dbf4914b14a95f82e70f08c |
17 | ″ | ″ | N62c3c7caa1bd402d82edefbc5097b97f |
18 | ″ | ″ | sg:journal.1036713 |
19 | ″ | schema:keywords | AR nanostructures |
20 | ″ | ″ | absorptance enhancement |
21 | ″ | ″ | analysis |
22 | ″ | ″ | analysis method |
23 | ″ | ″ | antireflection |
24 | ″ | ″ | antireflection properties |
25 | ″ | ″ | better performance |
26 | ″ | ″ | broadband antireflection |
27 | ″ | ″ | cells |
28 | ″ | ″ | current density |
29 | ″ | ″ | density |
30 | ″ | ″ | different nanostructures |
31 | ″ | ″ | effect |
32 | ″ | ″ | effective medium theory |
33 | ″ | ″ | effective refractive index |
34 | ″ | ″ | efficiency |
35 | ″ | ″ | enhancement |
36 | ″ | ″ | excellent antireflection properties |
37 | ″ | ″ | front side |
38 | ″ | ″ | height |
39 | ″ | ″ | index |
40 | ″ | ″ | loss analysis |
41 | ″ | ″ | medium theory |
42 | ″ | ″ | method |
43 | ″ | ″ | moth-eye nanostructures |
44 | ″ | ″ | nanostructures |
45 | ″ | ″ | optical analysis methods |
46 | ″ | ″ | optical effects |
47 | ″ | ″ | optical performance |
48 | ″ | ″ | optical simulation method |
49 | ″ | ″ | output |
50 | ″ | ″ | overall efficiency |
51 | ″ | ″ | paper |
52 | ″ | ″ | performance |
53 | ″ | ″ | photovoltaic output |
54 | ″ | ″ | properties |
55 | ″ | ″ | reflectance |
56 | ″ | ″ | reflection |
57 | ″ | ″ | refractive index |
58 | ″ | ″ | semiconductor solar cells |
59 | ″ | ″ | side |
60 | ″ | ″ | simulation method |
61 | ″ | ″ | solar cells |
62 | ″ | ″ | solar weighted reflectance |
63 | ″ | ″ | theory |
64 | ″ | schema:name | The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell |
65 | ″ | schema:pagination | 581-595 |
66 | ″ | schema:productId | Na7fbecf09d9e4a32ad76c95d5793d647 |
67 | ″ | ″ | Nd54eb2f4df024916ab973cdae13d8c8c |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141714878 |
69 | ″ | ″ | https://doi.org/10.1007/s11468-021-01547-x |
70 | ″ | schema:sdDatePublished | 2022-05-20T07:40 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | Nb573a108b37640e8801963041bb25540 |
73 | ″ | schema:url | https://doi.org/10.1007/s11468-021-01547-x |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | articles |
76 | ″ | rdf:type | schema:ScholarlyArticle |
77 | N00d0bbb24dbf4914b14a95f82e70f08c | schema:volumeNumber | 17 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | N08428d81d97b43b491c185eb4feec12f | rdf:first | sg:person.07743275223.75 |
80 | ″ | rdf:rest | N7da3ae68e6eb4a37809284fc4f78ddd5 |
81 | N45e72cafb6844edebf9e76e4d4313a29 | rdf:first | sg:person.011673323200.32 |
82 | ″ | rdf:rest | Ndcf3f04fc37a4725a66e304872ab72a8 |
83 | N587cc50c013d4e89867a3b9a20dbe104 | rdf:first | sg:person.015332567031.80 |
84 | ″ | rdf:rest | N08428d81d97b43b491c185eb4feec12f |
85 | N62c3c7caa1bd402d82edefbc5097b97f | schema:issueNumber | 2 |
86 | ″ | rdf:type | schema:PublicationIssue |
87 | N7da3ae68e6eb4a37809284fc4f78ddd5 | rdf:first | sg:person.01203661143.63 |
88 | ″ | rdf:rest | N45e72cafb6844edebf9e76e4d4313a29 |
89 | Na7fbecf09d9e4a32ad76c95d5793d647 | schema:name | dimensions_id |
90 | ″ | schema:value | pub.1141714878 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | Nb573a108b37640e8801963041bb25540 | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | Nd54eb2f4df024916ab973cdae13d8c8c | schema:name | doi |
95 | ″ | schema:value | 10.1007/s11468-021-01547-x |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Ndcf3f04fc37a4725a66e304872ab72a8 | rdf:first | sg:person.01336677211.61 |
98 | ″ | rdf:rest | rdf:nil |
99 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Physical Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Other Physical Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1036713 | schema:issn | 1557-1955 |
109 | ″ | ″ | 1557-1963 |
110 | ″ | schema:name | Plasmonics |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.011673323200.32 | schema:affiliation | grid-institutes:grid.411196.a |
114 | ″ | schema:familyName | Omran |
115 | ″ | schema:givenName | May |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673323200.32 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.01203661143.63 | schema:affiliation | grid-institutes:grid.7155.6 |
119 | ″ | schema:familyName | Shehata |
120 | ″ | schema:givenName | Nader |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203661143.63 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.01336677211.61 | schema:affiliation | grid-institutes:grid.7155.6 |
124 | ″ | schema:familyName | Kandas |
125 | ″ | schema:givenName | Ishac |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336677211.61 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.015332567031.80 | schema:affiliation | grid-institutes:grid.411196.a |
129 | ″ | schema:familyName | Hajjiah |
130 | ″ | schema:givenName | Ali |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015332567031.80 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.07743275223.75 | schema:affiliation | grid-institutes:grid.411196.a |
134 | ″ | schema:familyName | Badran |
135 | ″ | schema:givenName | Hussein |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07743275223.75 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1038/nature12509 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038126904 |
139 | ″ | ″ | https://doi.org/10.1038/nature12509 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1038/s41566-019-0479-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1119806197 |
142 | ″ | ″ | https://doi.org/10.1038/s41566-019-0479-2 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1038/s41598-021-93914-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1139693242 |
145 | ″ | ″ | https://doi.org/10.1038/s41598-021-93914-1 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | sg:pub.10.1038/srep14485 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020861979 |
148 | ″ | ″ | https://doi.org/10.1038/srep14485 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | sg:pub.10.1186/s40807-017-0042-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1091212905 |
151 | ″ | ″ | https://doi.org/10.1186/s40807-017-0042-z |
152 | ″ | rdf:type | schema:CreativeWork |
153 | grid-institutes:grid.411196.a | schema:alternateName | Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait |
154 | ″ | schema:name | Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait |
155 | ″ | rdf:type | schema:Organization |
156 | grid-institutes:grid.7155.6 | schema:alternateName | Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt |
157 | ″ | schema:name | Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt |
158 | ″ | ″ | Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt |
159 | ″ | ″ | Department of Physics, Kuwait College of Science and Technology, Safat 13133, Kuwait City, Kuwait |
160 | ″ | ″ | Faculty of Science, USTAR Bio-Innovation Center, Utah State University, 84341, Logan, UT, USA |
161 | ″ | rdf:type | schema:Organization |