The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-07

AUTHORS

Ali Hajjiah, Hussein Badran, Nader Shehata, May Omran, Ishac Kandas

ABSTRACT

Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis (Jloss\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_{\mathrm{loss}}$$\end{document}), and finally, the spectral photovoltaic output (SPV). More... »

PAGES

581-595

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x

DOI

http://dx.doi.org/10.1007/s11468-021-01547-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141714878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait", 
          "id": "http://www.grid.ac/institutes/grid.411196.a", 
          "name": [
            "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hajjiah", 
        "givenName": "Ali", 
        "id": "sg:person.015332567031.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015332567031.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait", 
          "id": "http://www.grid.ac/institutes/grid.411196.a", 
          "name": [
            "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badran", 
        "givenName": "Hussein", 
        "id": "sg:person.07743275223.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07743275223.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt", 
          "id": "http://www.grid.ac/institutes/grid.7155.6", 
          "name": [
            "Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt", 
            "Department of Physics, Kuwait College of Science and Technology, Safat 13133, Kuwait City, Kuwait", 
            "Faculty of Science, USTAR Bio-Innovation Center, Utah State University, 84341, Logan, UT, USA", 
            "Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shehata", 
        "givenName": "Nader", 
        "id": "sg:person.01203661143.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203661143.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait", 
          "id": "http://www.grid.ac/institutes/grid.411196.a", 
          "name": [
            "Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omran", 
        "givenName": "May", 
        "id": "sg:person.011673323200.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673323200.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt", 
          "id": "http://www.grid.ac/institutes/grid.7155.6", 
          "name": [
            "Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt", 
            "Department of Physics, Kuwait College of Science and Technology, Safat 13133, Kuwait City, Kuwait", 
            "Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kandas", 
        "givenName": "Ishac", 
        "id": "sg:person.01336677211.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336677211.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41566-019-0479-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1119806197", 
          "https://doi.org/10.1038/s41566-019-0479-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep14485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020861979", 
          "https://doi.org/10.1038/srep14485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40807-017-0042-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091212905", 
          "https://doi.org/10.1186/s40807-017-0042-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-021-93914-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139693242", 
          "https://doi.org/10.1038/s41598-021-93914-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038126904", 
          "https://doi.org/10.1038/nature12509"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-07", 
    "datePublishedReg": "2021-10-07", 
    "description": "Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic\u2013inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM)\u00a0will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by\u2009~\u20097.8%, thus enhancing the optical current density by\u2009~\u200913.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis (Jloss\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${J}_{\\mathrm{loss}}$$\\end{document}), and finally, the spectral photovoltaic output (SPV).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-021-01547-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "semiconductor solar cells", 
      "solar weighted reflectance", 
      "solar cells", 
      "effective medium theory", 
      "AR nanostructures", 
      "effective refractive index", 
      "optical simulation method", 
      "moth-eye nanostructures", 
      "excellent antireflection properties", 
      "optical effects", 
      "optical analysis methods", 
      "refractive index", 
      "absorptance enhancement", 
      "optical performance", 
      "broadband antireflection", 
      "antireflection properties", 
      "different nanostructures", 
      "nanostructures", 
      "photovoltaic output", 
      "front side", 
      "current density", 
      "loss analysis", 
      "medium theory", 
      "overall efficiency", 
      "simulation method", 
      "antireflection", 
      "better performance", 
      "analysis method", 
      "reflectance", 
      "performance", 
      "density", 
      "efficiency", 
      "enhancement", 
      "properties", 
      "method", 
      "theory", 
      "cells", 
      "reflection", 
      "height", 
      "output", 
      "effect", 
      "paper", 
      "side", 
      "analysis", 
      "index"
    ], 
    "name": "The Effect of Different AR Nanostructures on the Optical Performance of Organic\u2013Inorganic Halide Perovskite Semiconductor Solar Cell", 
    "pagination": "581-595", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141714878"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-021-01547-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-021-01547-x", 
      "https://app.dimensions.ai/details/publication/pub.1141714878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_915.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-021-01547-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01547-x'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      76 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-021-01547-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author N587cc50c013d4e89867a3b9a20dbe104
5 schema:citation sg:pub.10.1038/nature12509
6 sg:pub.10.1038/s41566-019-0479-2
7 sg:pub.10.1038/s41598-021-93914-1
8 sg:pub.10.1038/srep14485
9 sg:pub.10.1186/s40807-017-0042-z
10 schema:datePublished 2021-10-07
11 schema:datePublishedReg 2021-10-07
12 schema:description Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis (Jloss\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J}_{\mathrm{loss}}$$\end{document}), and finally, the spectral photovoltaic output (SPV).
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N00d0bbb24dbf4914b14a95f82e70f08c
17 N62c3c7caa1bd402d82edefbc5097b97f
18 sg:journal.1036713
19 schema:keywords AR nanostructures
20 absorptance enhancement
21 analysis
22 analysis method
23 antireflection
24 antireflection properties
25 better performance
26 broadband antireflection
27 cells
28 current density
29 density
30 different nanostructures
31 effect
32 effective medium theory
33 effective refractive index
34 efficiency
35 enhancement
36 excellent antireflection properties
37 front side
38 height
39 index
40 loss analysis
41 medium theory
42 method
43 moth-eye nanostructures
44 nanostructures
45 optical analysis methods
46 optical effects
47 optical performance
48 optical simulation method
49 output
50 overall efficiency
51 paper
52 performance
53 photovoltaic output
54 properties
55 reflectance
56 reflection
57 refractive index
58 semiconductor solar cells
59 side
60 simulation method
61 solar cells
62 solar weighted reflectance
63 theory
64 schema:name The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell
65 schema:pagination 581-595
66 schema:productId Na7fbecf09d9e4a32ad76c95d5793d647
67 Nd54eb2f4df024916ab973cdae13d8c8c
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141714878
69 https://doi.org/10.1007/s11468-021-01547-x
70 schema:sdDatePublished 2022-05-20T07:40
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nb573a108b37640e8801963041bb25540
73 schema:url https://doi.org/10.1007/s11468-021-01547-x
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N00d0bbb24dbf4914b14a95f82e70f08c schema:volumeNumber 17
78 rdf:type schema:PublicationVolume
79 N08428d81d97b43b491c185eb4feec12f rdf:first sg:person.07743275223.75
80 rdf:rest N7da3ae68e6eb4a37809284fc4f78ddd5
81 N45e72cafb6844edebf9e76e4d4313a29 rdf:first sg:person.011673323200.32
82 rdf:rest Ndcf3f04fc37a4725a66e304872ab72a8
83 N587cc50c013d4e89867a3b9a20dbe104 rdf:first sg:person.015332567031.80
84 rdf:rest N08428d81d97b43b491c185eb4feec12f
85 N62c3c7caa1bd402d82edefbc5097b97f schema:issueNumber 2
86 rdf:type schema:PublicationIssue
87 N7da3ae68e6eb4a37809284fc4f78ddd5 rdf:first sg:person.01203661143.63
88 rdf:rest N45e72cafb6844edebf9e76e4d4313a29
89 Na7fbecf09d9e4a32ad76c95d5793d647 schema:name dimensions_id
90 schema:value pub.1141714878
91 rdf:type schema:PropertyValue
92 Nb573a108b37640e8801963041bb25540 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nd54eb2f4df024916ab973cdae13d8c8c schema:name doi
95 schema:value 10.1007/s11468-021-01547-x
96 rdf:type schema:PropertyValue
97 Ndcf3f04fc37a4725a66e304872ab72a8 rdf:first sg:person.01336677211.61
98 rdf:rest rdf:nil
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
106 schema:name Other Physical Sciences
107 rdf:type schema:DefinedTerm
108 sg:journal.1036713 schema:issn 1557-1955
109 1557-1963
110 schema:name Plasmonics
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.011673323200.32 schema:affiliation grid-institutes:grid.411196.a
114 schema:familyName Omran
115 schema:givenName May
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011673323200.32
117 rdf:type schema:Person
118 sg:person.01203661143.63 schema:affiliation grid-institutes:grid.7155.6
119 schema:familyName Shehata
120 schema:givenName Nader
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203661143.63
122 rdf:type schema:Person
123 sg:person.01336677211.61 schema:affiliation grid-institutes:grid.7155.6
124 schema:familyName Kandas
125 schema:givenName Ishac
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336677211.61
127 rdf:type schema:Person
128 sg:person.015332567031.80 schema:affiliation grid-institutes:grid.411196.a
129 schema:familyName Hajjiah
130 schema:givenName Ali
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015332567031.80
132 rdf:type schema:Person
133 sg:person.07743275223.75 schema:affiliation grid-institutes:grid.411196.a
134 schema:familyName Badran
135 schema:givenName Hussein
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07743275223.75
137 rdf:type schema:Person
138 sg:pub.10.1038/nature12509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038126904
139 https://doi.org/10.1038/nature12509
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/s41566-019-0479-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119806197
142 https://doi.org/10.1038/s41566-019-0479-2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/s41598-021-93914-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139693242
145 https://doi.org/10.1038/s41598-021-93914-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep14485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020861979
148 https://doi.org/10.1038/srep14485
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/s40807-017-0042-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091212905
151 https://doi.org/10.1186/s40807-017-0042-z
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.411196.a schema:alternateName Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait
154 schema:name Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, 13133, Kuwait City, Kuwait
155 rdf:type schema:Organization
156 grid-institutes:grid.7155.6 schema:alternateName Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt
157 schema:name Center of Smart Materials, Nanotechnology, and Photonics (CSMPN), Smart Critical Infrastructure (SmartCI) Research Center, Alexandria University, 21544, Alexandria, Egypt
158 Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, 21544, Alexandria, Egypt
159 Department of Physics, Kuwait College of Science and Technology, Safat 13133, Kuwait City, Kuwait
160 Faculty of Science, USTAR Bio-Innovation Center, Utah State University, 84341, Logan, UT, USA
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...