Ontology type: schema:ScholarlyArticle
2021-10-06
AUTHORS ABSTRACTWe report a simple route to design highly sensitive triangular silver nanoplates (TSNPs)-based SERS substrate for the trace-level detection of explosive molecules. The size-dependent localized surface plasmon resonance (LSPR) tunability for the synthesis of TSNPs is achieved by controlling reaction kinetics and seed volume in a modified seed-mediated approach. The computed extinction spectra of TSNP, using the finite-difference time-domain (FDTD) method, are in excellent agreement with the experimental results, therefore assisting further in the investigation of the plasmonic properties of TSNP. The higher electric field enhancement offered by TSNP is systematically investigated by performing the FDTD simulations for various sizes and corner rounding of TSNP. The FDTD results show that the dipolar plasmon resonance wavelength, size, and corner rounding of TSNP are the principal contributing factors for designing the high-performance SERS substrate. Herein, we have used a portable Raman system for the SERS-based detection of three important explosive molecules: picric acid (PA), ammonium nitrate (AN), and 2, 4-dinitrotoluene (DNT). The TSNP-based SERS substrates display excellent intensity enhancement factors of ~ 107 for rhodamine 6G (R6G) and PA and ~ 105 for AN. The high sensitivity of SERS substrate with limit-of-detection (LOD) of value 2.3 × 10−11 M for PA and 3.1 × 10−8 M for AN and effective batch-to-batch reproducibility for DNT, thus offering its potentials for field detection of explosive molecules at trace-level. More... »
PAGES559-573
http://scigraph.springernature.com/pub.10.1007/s11468-021-01544-0
DOIhttp://dx.doi.org/10.1007/s11468-021-01544-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141691970
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, Indian Institute of Technology, 110016, Delhi, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.417967.a",
"name": [
"Department of Physics, Indian Institute of Technology, 110016, Delhi, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "Govind",
"id": "sg:person.011747715051.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747715051.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Indian Institute of Technology, 110016, Delhi, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.417967.a",
"name": [
"Department of Physics, Indian Institute of Technology, 110016, Delhi, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Soni",
"givenName": "Ravi Kant",
"id": "sg:person.014701642673.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014701642673.93"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11468-015-9991-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017546164",
"https://doi.org/10.1007/s11468-015-9991-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12274-016-1190-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012222531",
"https://doi.org/10.1007/s12274-016-1190-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10-06",
"datePublishedReg": "2021-10-06",
"description": "We report a simple route to design highly sensitive triangular silver nanoplates (TSNPs)-based SERS substrate for the trace-level detection of explosive molecules. The size-dependent localized surface plasmon resonance (LSPR) tunability for the synthesis of TSNPs is achieved by controlling reaction kinetics and seed volume in a modified seed-mediated approach. The computed extinction spectra of TSNP, using the finite-difference time-domain (FDTD) method, are in excellent agreement with the experimental results, therefore assisting further in the investigation of the plasmonic properties of TSNP. The higher electric field enhancement offered by TSNP is systematically investigated by performing the FDTD simulations for various sizes and corner rounding of TSNP. The FDTD results show that the dipolar plasmon resonance wavelength, size, and corner rounding of TSNP are the principal contributing factors for designing the high-performance SERS substrate. Herein, we have used a portable Raman system for the SERS-based detection of three important explosive molecules: picric acid (PA), ammonium nitrate (AN), and 2, 4-dinitrotoluene (DNT). The TSNP-based SERS substrates display excellent intensity enhancement factors of\u2009~\u2009107 for rhodamine 6G (R6G) and PA and\u2009~\u2009105 for AN. The high sensitivity of SERS substrate with limit-of-detection (LOD) of value 2.3\u2009\u00d7\u200910\u221211\u00a0M for PA and 3.1\u2009\u00d7\u200910\u22128\u00a0M for AN and effective batch-to-batch reproducibility for DNT, thus offering its potentials for field detection of explosive molecules at trace-level.",
"genre": "article",
"id": "sg:pub.10.1007/s11468-021-01544-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1036713",
"issn": [
"1557-1955",
"1557-1963"
],
"name": "Plasmonics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "17"
}
],
"keywords": [
"trace level detection",
"explosive molecules",
"triangular silver nanoplates",
"SERS substrate",
"picric acid",
"SERS substrates",
"silver nanoplates",
"high-performance SERS substrates",
"portable Raman system",
"surface plasmon resonance tunability",
"seed-mediated approach",
"rhodamine 6G",
"ammonium nitrate",
"plasmon resonance wavelength",
"high electric field enhancement",
"simple route",
"corner rounding",
"plasmonic properties",
"batch reproducibility",
"electric field enhancement",
"reaction kinetics",
"extinction spectra",
"finite-difference time-domain method",
"molecules",
"Raman system",
"enhancement factor",
"time-domain method",
"intensity enhancement factor",
"resonance tunability",
"nanoplates",
"effective batch",
"FDTD simulations",
"high sensitivity",
"field enhancement",
"substrate",
"resonance wavelength",
"field detection",
"experimental results",
"SERS",
"excellent agreement",
"FDTD results",
"synthesis",
"Herein",
"detection",
"DNT",
"kinetics",
"nitrate",
"route",
"acid",
"spectra",
"tunability",
"properties",
"simulations",
"reproducibility",
"size",
"limit",
"wavelength",
"batch",
"enhancement",
"results",
"potential",
"agreement",
"system",
"method",
"investigation",
"rounding",
"sensitivity",
"volume",
"tSNPs",
"approach",
"factors",
"seed volume"
],
"name": "Trace-Level Detection of Explosive Molecules with Triangular Silver Nanoplates-Based SERS Substrates",
"pagination": "559-573",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141691970"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11468-021-01544-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11468-021-01544-0",
"https://app.dimensions.ai/details/publication/pub.1141691970"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_888.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11468-021-01544-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01544-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01544-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01544-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01544-0'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
100 URIs
89 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11468-021-01544-0 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | ″ | anzsrc-for:0299 |
4 | ″ | schema:author | Nc304f3037a2c4b2794ccde50b5b1ed9a |
5 | ″ | schema:citation | sg:pub.10.1007/s11468-015-9991-5 |
6 | ″ | ″ | sg:pub.10.1007/s12274-016-1190-y |
7 | ″ | schema:datePublished | 2021-10-06 |
8 | ″ | schema:datePublishedReg | 2021-10-06 |
9 | ″ | schema:description | We report a simple route to design highly sensitive triangular silver nanoplates (TSNPs)-based SERS substrate for the trace-level detection of explosive molecules. The size-dependent localized surface plasmon resonance (LSPR) tunability for the synthesis of TSNPs is achieved by controlling reaction kinetics and seed volume in a modified seed-mediated approach. The computed extinction spectra of TSNP, using the finite-difference time-domain (FDTD) method, are in excellent agreement with the experimental results, therefore assisting further in the investigation of the plasmonic properties of TSNP. The higher electric field enhancement offered by TSNP is systematically investigated by performing the FDTD simulations for various sizes and corner rounding of TSNP. The FDTD results show that the dipolar plasmon resonance wavelength, size, and corner rounding of TSNP are the principal contributing factors for designing the high-performance SERS substrate. Herein, we have used a portable Raman system for the SERS-based detection of three important explosive molecules: picric acid (PA), ammonium nitrate (AN), and 2, 4-dinitrotoluene (DNT). The TSNP-based SERS substrates display excellent intensity enhancement factors of ~ 107 for rhodamine 6G (R6G) and PA and ~ 105 for AN. The high sensitivity of SERS substrate with limit-of-detection (LOD) of value 2.3 × 10−11 M for PA and 3.1 × 10−8 M for AN and effective batch-to-batch reproducibility for DNT, thus offering its potentials for field detection of explosive molecules at trace-level. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N35782e304072424898bef5d977166b39 |
14 | ″ | ″ | N56a506c4fac540b281c958bc68fe2003 |
15 | ″ | ″ | sg:journal.1036713 |
16 | ″ | schema:keywords | DNT |
17 | ″ | ″ | FDTD results |
18 | ″ | ″ | FDTD simulations |
19 | ″ | ″ | Herein |
20 | ″ | ″ | Raman system |
21 | ″ | ″ | SERS |
22 | ″ | ″ | SERS substrate |
23 | ″ | ″ | SERS substrates |
24 | ″ | ″ | acid |
25 | ″ | ″ | agreement |
26 | ″ | ″ | ammonium nitrate |
27 | ″ | ″ | approach |
28 | ″ | ″ | batch |
29 | ″ | ″ | batch reproducibility |
30 | ″ | ″ | corner rounding |
31 | ″ | ″ | detection |
32 | ″ | ″ | effective batch |
33 | ″ | ″ | electric field enhancement |
34 | ″ | ″ | enhancement |
35 | ″ | ″ | enhancement factor |
36 | ″ | ″ | excellent agreement |
37 | ″ | ″ | experimental results |
38 | ″ | ″ | explosive molecules |
39 | ″ | ″ | extinction spectra |
40 | ″ | ″ | factors |
41 | ″ | ″ | field detection |
42 | ″ | ″ | field enhancement |
43 | ″ | ″ | finite-difference time-domain method |
44 | ″ | ″ | high electric field enhancement |
45 | ″ | ″ | high sensitivity |
46 | ″ | ″ | high-performance SERS substrates |
47 | ″ | ″ | intensity enhancement factor |
48 | ″ | ″ | investigation |
49 | ″ | ″ | kinetics |
50 | ″ | ″ | limit |
51 | ″ | ″ | method |
52 | ″ | ″ | molecules |
53 | ″ | ″ | nanoplates |
54 | ″ | ″ | nitrate |
55 | ″ | ″ | picric acid |
56 | ″ | ″ | plasmon resonance wavelength |
57 | ″ | ″ | plasmonic properties |
58 | ″ | ″ | portable Raman system |
59 | ″ | ″ | potential |
60 | ″ | ″ | properties |
61 | ″ | ″ | reaction kinetics |
62 | ″ | ″ | reproducibility |
63 | ″ | ″ | resonance tunability |
64 | ″ | ″ | resonance wavelength |
65 | ″ | ″ | results |
66 | ″ | ″ | rhodamine 6G |
67 | ″ | ″ | rounding |
68 | ″ | ″ | route |
69 | ″ | ″ | seed volume |
70 | ″ | ″ | seed-mediated approach |
71 | ″ | ″ | sensitivity |
72 | ″ | ″ | silver nanoplates |
73 | ″ | ″ | simple route |
74 | ″ | ″ | simulations |
75 | ″ | ″ | size |
76 | ″ | ″ | spectra |
77 | ″ | ″ | substrate |
78 | ″ | ″ | surface plasmon resonance tunability |
79 | ″ | ″ | synthesis |
80 | ″ | ″ | system |
81 | ″ | ″ | tSNPs |
82 | ″ | ″ | time-domain method |
83 | ″ | ″ | trace level detection |
84 | ″ | ″ | triangular silver nanoplates |
85 | ″ | ″ | tunability |
86 | ″ | ″ | volume |
87 | ″ | ″ | wavelength |
88 | ″ | schema:name | Trace-Level Detection of Explosive Molecules with Triangular Silver Nanoplates-Based SERS Substrates |
89 | ″ | schema:pagination | 559-573 |
90 | ″ | schema:productId | N620a8b2ad1614462b3d5aff35af7fb29 |
91 | ″ | ″ | Nd3287583d1b04fd7b70fa40870145597 |
92 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141691970 |
93 | ″ | ″ | https://doi.org/10.1007/s11468-021-01544-0 |
94 | ″ | schema:sdDatePublished | 2022-05-10T10:29 |
95 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
96 | ″ | schema:sdPublisher | Nbc33c94df96a42189a8e3e162e52b5ac |
97 | ″ | schema:url | https://doi.org/10.1007/s11468-021-01544-0 |
98 | ″ | sgo:license | sg:explorer/license/ |
99 | ″ | sgo:sdDataset | articles |
100 | ″ | rdf:type | schema:ScholarlyArticle |
101 | N35782e304072424898bef5d977166b39 | schema:issueNumber | 2 |
102 | ″ | rdf:type | schema:PublicationIssue |
103 | N49ab9d9566354bcab420b9cf7ce90ad6 | rdf:first | sg:person.014701642673.93 |
104 | ″ | rdf:rest | rdf:nil |
105 | N56a506c4fac540b281c958bc68fe2003 | schema:volumeNumber | 17 |
106 | ″ | rdf:type | schema:PublicationVolume |
107 | N620a8b2ad1614462b3d5aff35af7fb29 | schema:name | doi |
108 | ″ | schema:value | 10.1007/s11468-021-01544-0 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | Nbc33c94df96a42189a8e3e162e52b5ac | schema:name | Springer Nature - SN SciGraph project |
111 | ″ | rdf:type | schema:Organization |
112 | Nc304f3037a2c4b2794ccde50b5b1ed9a | rdf:first | sg:person.011747715051.15 |
113 | ″ | rdf:rest | N49ab9d9566354bcab420b9cf7ce90ad6 |
114 | Nd3287583d1b04fd7b70fa40870145597 | schema:name | dimensions_id |
115 | ″ | schema:value | pub.1141691970 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Physical Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Other Physical Sciences |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | sg:journal.1036713 | schema:issn | 1557-1955 |
127 | ″ | ″ | 1557-1963 |
128 | ″ | schema:name | Plasmonics |
129 | ″ | schema:publisher | Springer Nature |
130 | ″ | rdf:type | schema:Periodical |
131 | sg:person.011747715051.15 | schema:affiliation | grid-institutes:grid.417967.a |
132 | ″ | schema:familyName | Kumar |
133 | ″ | schema:givenName | Govind |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747715051.15 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.014701642673.93 | schema:affiliation | grid-institutes:grid.417967.a |
137 | ″ | schema:familyName | Soni |
138 | ″ | schema:givenName | Ravi Kant |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014701642673.93 |
140 | ″ | rdf:type | schema:Person |
141 | sg:pub.10.1007/s11468-015-9991-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017546164 |
142 | ″ | ″ | https://doi.org/10.1007/s11468-015-9991-5 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1007/s12274-016-1190-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012222531 |
145 | ″ | ″ | https://doi.org/10.1007/s12274-016-1190-y |
146 | ″ | rdf:type | schema:CreativeWork |
147 | grid-institutes:grid.417967.a | schema:alternateName | Department of Physics, Indian Institute of Technology, 110016, Delhi, New Delhi, India |
148 | ″ | schema:name | Department of Physics, Indian Institute of Technology, 110016, Delhi, New Delhi, India |
149 | ″ | rdf:type | schema:Organization |