Improve the Hole Size–Dependent Refractive Index Sensitivity of Au–Ag Nanocages by Tuning the Alloy Composition View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-07

AUTHORS

Jian-Jun Li, Qiu-Xiang Qin, Guo-Jun Weng, Jian Zhu, Jun-Wu Zhao

ABSTRACT

In this study, Au–Ag nanoboxes are converted into Au–Ag alloy nanocages by increasing the hole size. The extinction spectrum and the refractive index sensing characteristics of Au–Ag alloy nanocages with different geometric parameters are studied by using discrete dipole approximation method (DDA). With the increase of Au composition, the peak of local surface plasmon resonance (LSPR) shows approximately linear redshift and the sensitivity factor shows approximately linear decrease. The refractive index sensitivity can be effectively controlled by the Au–Ag ratio at large hole size because the hole and cavity surfaces distribute more environmental dielectric components. Therefore, increasing the hole size and decreasing the Au–Ag ratio can improve the refractive index sensitivity. These calculation results have also been verified experimentally. In order to illustrate the influence of alloy composition on the LSPR characteristics and the refractive index sensitivity, the local electric field distributions under different geometric parameters are plotted. We find that the electric field direction on the hole and cavity surfaces is controlled by the Au–Ag ratio and environmental dielectric constant. Moreover, the field vectors on the hole and cavity surfaces are formed by the superposition of the incident field, the electric field generated by the oscillating electrons on the outer surface, and the polarized field in the environmental dielectric constant. More... »

PAGES

597-612

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-021-01536-0

DOI

http://dx.doi.org/10.1007/s11468-021-01536-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141720537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jian-Jun", 
        "id": "sg:person.07402377527.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07402377527.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Qiu-Xiang", 
        "id": "sg:person.016534711330.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016534711330.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weng", 
        "givenName": "Guo-Jun", 
        "id": "sg:person.014651773227.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651773227.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jian", 
        "id": "sg:person.013376674466.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013376674466.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi\u2019an Jiaotong University, Xi\u2019an 710049, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jun-Wu", 
        "id": "sg:person.013211256273.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013211256273.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-018-2353-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111057326", 
          "https://doi.org/10.1007/s00339-018-2353-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-013-1721-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014567165", 
          "https://doi.org/10.1007/s11051-013-1721-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-07", 
    "datePublishedReg": "2021-10-07", 
    "description": "In this study, Au\u2013Ag nanoboxes are converted into Au\u2013Ag alloy nanocages by increasing the hole size. The extinction spectrum and the refractive index sensing characteristics of Au\u2013Ag alloy nanocages with different geometric parameters are studied by using discrete dipole approximation method (DDA). With the increase of Au composition, the peak of local surface plasmon resonance (LSPR) shows approximately linear redshift and the sensitivity factor shows approximately linear decrease. The refractive index sensitivity can be effectively controlled by the Au\u2013Ag ratio at large hole size because the hole and cavity surfaces distribute more environmental dielectric components. Therefore, increasing the hole size and decreasing the Au\u2013Ag ratio can improve the refractive index sensitivity. These calculation results have also been verified experimentally. In order to illustrate the influence of alloy composition on the LSPR characteristics and the refractive index sensitivity, the local electric field distributions under different geometric parameters are plotted. We find that the electric field direction on the hole and cavity surfaces is controlled by the Au\u2013Ag ratio and environmental dielectric constant. Moreover, the field vectors on the hole and cavity surfaces are formed by the superposition of the incident field, the electric field generated by the oscillating electrons on the outer surface, and the polarized field in the environmental dielectric constant.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-021-01536-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8133331", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8307387", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "refractive index sensitivity", 
      "Au-Ag ratio", 
      "local surface plasmon resonance", 
      "discrete dipole approximation method", 
      "index sensitivity", 
      "environmental dielectric", 
      "cavity surface", 
      "Au-Ag", 
      "Au-Ag nanocages", 
      "surface plasmon resonance", 
      "dipole approximation method", 
      "LSPR characteristics", 
      "local electric field distribution", 
      "plasmon resonance", 
      "extinction spectra", 
      "Au composition", 
      "hole size", 
      "nanocages", 
      "large hole sizes", 
      "refractive index", 
      "electric field distribution", 
      "dielectric components", 
      "electric field direction", 
      "different geometric parameters", 
      "dielectric", 
      "field distribution", 
      "nanoboxes", 
      "alloy composition", 
      "electric field", 
      "outer surface", 
      "surface", 
      "size", 
      "sensitivity", 
      "holes", 
      "oscillating electrons", 
      "incident field", 
      "field direction", 
      "field vector", 
      "geometric parameters", 
      "electrons", 
      "field", 
      "ratio", 
      "vector", 
      "resonance", 
      "spectra", 
      "composition", 
      "characteristics", 
      "approximation method", 
      "redshift", 
      "peak", 
      "calculation results", 
      "sensitivity factors", 
      "parameters", 
      "method", 
      "superposition", 
      "order", 
      "direction", 
      "results", 
      "distribution", 
      "components", 
      "increase", 
      "decrease", 
      "influence", 
      "study", 
      "index", 
      "factors"
    ], 
    "name": "Improve the Hole Size\u2013Dependent Refractive Index Sensitivity of Au\u2013Ag Nanocages by Tuning the Alloy Composition", 
    "pagination": "597-612", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141720537"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-021-01536-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-021-01536-0", 
      "https://app.dimensions.ai/details/publication/pub.1141720537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_896.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-021-01536-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01536-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01536-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01536-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-021-01536-0'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      22 PREDICATES      94 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-021-01536-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author N06cac76a6f024874b67532873663aa70
5 schema:citation sg:pub.10.1007/s00339-018-2353-3
6 sg:pub.10.1007/s11051-013-1721-3
7 schema:datePublished 2021-10-07
8 schema:datePublishedReg 2021-10-07
9 schema:description In this study, Au–Ag nanoboxes are converted into Au–Ag alloy nanocages by increasing the hole size. The extinction spectrum and the refractive index sensing characteristics of Au–Ag alloy nanocages with different geometric parameters are studied by using discrete dipole approximation method (DDA). With the increase of Au composition, the peak of local surface plasmon resonance (LSPR) shows approximately linear redshift and the sensitivity factor shows approximately linear decrease. The refractive index sensitivity can be effectively controlled by the Au–Ag ratio at large hole size because the hole and cavity surfaces distribute more environmental dielectric components. Therefore, increasing the hole size and decreasing the Au–Ag ratio can improve the refractive index sensitivity. These calculation results have also been verified experimentally. In order to illustrate the influence of alloy composition on the LSPR characteristics and the refractive index sensitivity, the local electric field distributions under different geometric parameters are plotted. We find that the electric field direction on the hole and cavity surfaces is controlled by the Au–Ag ratio and environmental dielectric constant. Moreover, the field vectors on the hole and cavity surfaces are formed by the superposition of the incident field, the electric field generated by the oscillating electrons on the outer surface, and the polarized field in the environmental dielectric constant.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N8c67436c0b424d4f94f68674b12466d3
14 Ne9364920399a4d1684977fdc73f6e4fd
15 sg:journal.1036713
16 schema:keywords Au composition
17 Au-Ag
18 Au-Ag nanocages
19 Au-Ag ratio
20 LSPR characteristics
21 alloy composition
22 approximation method
23 calculation results
24 cavity surface
25 characteristics
26 components
27 composition
28 decrease
29 dielectric
30 dielectric components
31 different geometric parameters
32 dipole approximation method
33 direction
34 discrete dipole approximation method
35 distribution
36 electric field
37 electric field direction
38 electric field distribution
39 electrons
40 environmental dielectric
41 extinction spectra
42 factors
43 field
44 field direction
45 field distribution
46 field vector
47 geometric parameters
48 hole size
49 holes
50 incident field
51 increase
52 index
53 index sensitivity
54 influence
55 large hole sizes
56 local electric field distribution
57 local surface plasmon resonance
58 method
59 nanoboxes
60 nanocages
61 order
62 oscillating electrons
63 outer surface
64 parameters
65 peak
66 plasmon resonance
67 ratio
68 redshift
69 refractive index
70 refractive index sensitivity
71 resonance
72 results
73 sensitivity
74 sensitivity factors
75 size
76 spectra
77 study
78 superposition
79 surface
80 surface plasmon resonance
81 vector
82 schema:name Improve the Hole Size–Dependent Refractive Index Sensitivity of Au–Ag Nanocages by Tuning the Alloy Composition
83 schema:pagination 597-612
84 schema:productId N12c4966c3c9d48f09df3ed958ecaf562
85 Ne0a9c89fd29d49c191851a27d7367d40
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141720537
87 https://doi.org/10.1007/s11468-021-01536-0
88 schema:sdDatePublished 2022-05-10T10:31
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N9d01655ca89944b5a8d602035dad05d6
91 schema:url https://doi.org/10.1007/s11468-021-01536-0
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N06cac76a6f024874b67532873663aa70 rdf:first sg:person.07402377527.68
96 rdf:rest Nb4845d4b8b3d4c57a8ce842dd58f9549
97 N12c4966c3c9d48f09df3ed958ecaf562 schema:name dimensions_id
98 schema:value pub.1141720537
99 rdf:type schema:PropertyValue
100 N8be850cc58274dc5979dc137c38c1ca8 rdf:first sg:person.013211256273.16
101 rdf:rest rdf:nil
102 N8c67436c0b424d4f94f68674b12466d3 schema:volumeNumber 17
103 rdf:type schema:PublicationVolume
104 N9d01655ca89944b5a8d602035dad05d6 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nb4845d4b8b3d4c57a8ce842dd58f9549 rdf:first sg:person.016534711330.54
107 rdf:rest Ne0e5df9ba408481f9006bca988cfabba
108 Ne0a9c89fd29d49c191851a27d7367d40 schema:name doi
109 schema:value 10.1007/s11468-021-01536-0
110 rdf:type schema:PropertyValue
111 Ne0e5df9ba408481f9006bca988cfabba rdf:first sg:person.014651773227.60
112 rdf:rest Ne59312ed16d14f409ec160049edfac24
113 Ne59312ed16d14f409ec160049edfac24 rdf:first sg:person.013376674466.41
114 rdf:rest N8be850cc58274dc5979dc137c38c1ca8
115 Ne9364920399a4d1684977fdc73f6e4fd schema:issueNumber 2
116 rdf:type schema:PublicationIssue
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
121 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
124 schema:name Other Physical Sciences
125 rdf:type schema:DefinedTerm
126 sg:grant.8133331 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-021-01536-0
127 rdf:type schema:MonetaryGrant
128 sg:grant.8307387 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-021-01536-0
129 rdf:type schema:MonetaryGrant
130 sg:journal.1036713 schema:issn 1557-1955
131 1557-1963
132 schema:name Plasmonics
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.013211256273.16 schema:affiliation grid-institutes:grid.43169.39
136 schema:familyName Zhao
137 schema:givenName Jun-Wu
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013211256273.16
139 rdf:type schema:Person
140 sg:person.013376674466.41 schema:affiliation grid-institutes:grid.43169.39
141 schema:familyName Zhu
142 schema:givenName Jian
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013376674466.41
144 rdf:type schema:Person
145 sg:person.014651773227.60 schema:affiliation grid-institutes:grid.43169.39
146 schema:familyName Weng
147 schema:givenName Guo-Jun
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651773227.60
149 rdf:type schema:Person
150 sg:person.016534711330.54 schema:affiliation grid-institutes:grid.43169.39
151 schema:familyName Qin
152 schema:givenName Qiu-Xiang
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016534711330.54
154 rdf:type schema:Person
155 sg:person.07402377527.68 schema:affiliation grid-institutes:grid.43169.39
156 schema:familyName Li
157 schema:givenName Jian-Jun
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07402377527.68
159 rdf:type schema:Person
160 sg:pub.10.1007/s00339-018-2353-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057326
161 https://doi.org/10.1007/s00339-018-2353-3
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11051-013-1721-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014567165
164 https://doi.org/10.1007/s11051-013-1721-3
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.43169.39 schema:alternateName The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
167 schema:name The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...