Enhanced RI Sensitivity and SERS Performances of Individual Au Nanobipyramid Dimers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-10-27

AUTHORS

TianYi Fu, ChaoLing Du, YangXi Chen, RuXin Zhang, Yan Zhu, Lu Sun, DaNing Shi

ABSTRACT

Both the plasmon refractive index (RI) sensitivity and SERS performance of individual Au nanobipyramid (NBP) dimers are numerically investigated by finite element method (FEM). Each of the fractional shift of LSPR peak wavelength λLSPR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_{LSPR}$$\end{document} of Au NBP dimer’s longitudinal dipole mode and the corresponding RI sensitivity factor S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is unveiled to obey the universal “plasmon ruler” only for the scaled gap size being larger than 0.10, which is well elucidated in terms of the fractional shift of enhanced Emax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| E \right|_{\max }$$\end{document} around the gap region. The maximum S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} and SERS enhancement factor G at gap distances 2 nm of Au NBP dimer are demonstrated to reach 618 nm RIU−1 and 4.5 × 1011, respectively, providing excellent plasmon RI sensitivity and SERS substrates. The enhanced S and G of Au NBP dimer than those of Au nanorod and nanoellipsoid counterparts under the same incident light and dimer geometry configurations are presented and discussed as well, respectively. The present work provides helpful clues for future designing Au dimer-based SERS substrates and LSPR RI sensors for chemical/biological sensing and detection. More... »

PAGES

485-491

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-020-01302-8

DOI

http://dx.doi.org/10.1007/s11468-020-01302-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132060287


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "TianYi", 
        "id": "sg:person.011202657415.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202657415.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "ChaoLing", 
        "id": "sg:person.013252104046.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252104046.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "YangXi", 
        "id": "sg:person.010405277015.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405277015.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "RuXin", 
        "id": "sg:person.016632323573.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632323573.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.07774025227.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Lu", 
        "id": "sg:person.011126512450.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126512450.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "DaNing", 
        "id": "sg:person.01042650013.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042650013.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms8571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017486043", 
          "https://doi.org/10.1038/ncomms8571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-015-9939-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031031537", 
          "https://doi.org/10.1007/s11468-015-9939-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3938/jkps.72.599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101505225", 
          "https://doi.org/10.3938/jkps.72.599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-017-0685-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100109257", 
          "https://doi.org/10.1007/s11468-017-0685-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-27", 
    "datePublishedReg": "2020-10-27", 
    "description": "Both the plasmon refractive index (RI) sensitivity and SERS performance of individual Au nanobipyramid (NBP) dimers are numerically investigated by finite element method (FEM). Each of the fractional shift of LSPR peak wavelength \u03bbLSPR\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda_{LSPR}$$\\end{document} of Au NBP dimer\u2019s longitudinal dipole mode and the corresponding RI sensitivity factor S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S$$\\end{document} is unveiled to obey the universal \u201cplasmon ruler\u201d only for the scaled gap size being larger than 0.10, which is well elucidated in terms of the fractional shift of enhanced Emax\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left| E \\right|_{\\max }$$\\end{document} around the gap region. The maximum S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S$$\\end{document} and SERS enhancement factor G at gap distances 2\u00a0nm of Au NBP dimer are demonstrated to reach 618\u00a0nm\u00a0RIU\u22121 and 4.5\u00a0\u00d7\u00a01011, respectively, providing excellent plasmon RI sensitivity and SERS substrates. The enhanced S and G of Au NBP dimer than those of Au nanorod and nanoellipsoid counterparts under the same incident light and dimer geometry configurations are presented and discussed as well, respectively. The present work provides helpful clues for future designing Au dimer-based SERS substrates and LSPR RI sensors for chemical/biological sensing and detection.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-020-01302-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "RI sensitivity", 
      "refractive index sensitivity", 
      "fractional shift", 
      "LSPR peak wavelength", 
      "chemical/biological sensing", 
      "index sensitivity", 
      "peak wavelength", 
      "dipole mode", 
      "plasmon rulers", 
      "gap region", 
      "SERS substrate", 
      "Au nanorods", 
      "incident light", 
      "helpful clues", 
      "RI sensor", 
      "biological sensing", 
      "sensitivity", 
      "wavelength", 
      "sensitivity factors", 
      "gap size", 
      "SERS Performances", 
      "SERS performance", 
      "dimers", 
      "shift", 
      "mode", 
      "factors", 
      "substrate", 
      "nanorods", 
      "light", 
      "geometry configuration", 
      "present work", 
      "clues", 
      "sensing", 
      "finite element method", 
      "size", 
      "region", 
      "factor G", 
      "distance 2", 
      "counterparts", 
      "configuration", 
      "sensors", 
      "detection", 
      "performance", 
      "element method", 
      "method", 
      "rulers", 
      "terms", 
      "work"
    ], 
    "name": "Enhanced RI Sensitivity and SERS Performances of Individual Au Nanobipyramid Dimers", 
    "pagination": "485-491", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132060287"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-020-01302-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-020-01302-8", 
      "https://app.dimensions.ai/details/publication/pub.1132060287"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_848.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-020-01302-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-020-01302-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-020-01302-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-020-01302-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-020-01302-8'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      77 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-020-01302-8 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author Nae18a660409a4883ac20b395b88e83dc
5 schema:citation sg:pub.10.1007/s11468-015-9939-9
6 sg:pub.10.1007/s11468-017-0685-z
7 sg:pub.10.1038/ncomms8571
8 sg:pub.10.3938/jkps.72.599
9 schema:datePublished 2020-10-27
10 schema:datePublishedReg 2020-10-27
11 schema:description Both the plasmon refractive index (RI) sensitivity and SERS performance of individual Au nanobipyramid (NBP) dimers are numerically investigated by finite element method (FEM). Each of the fractional shift of LSPR peak wavelength λLSPR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda_{LSPR}$$\end{document} of Au NBP dimer’s longitudinal dipole mode and the corresponding RI sensitivity factor S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is unveiled to obey the universal “plasmon ruler” only for the scaled gap size being larger than 0.10, which is well elucidated in terms of the fractional shift of enhanced Emax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| E \right|_{\max }$$\end{document} around the gap region. The maximum S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} and SERS enhancement factor G at gap distances 2 nm of Au NBP dimer are demonstrated to reach 618 nm RIU−1 and 4.5 × 1011, respectively, providing excellent plasmon RI sensitivity and SERS substrates. The enhanced S and G of Au NBP dimer than those of Au nanorod and nanoellipsoid counterparts under the same incident light and dimer geometry configurations are presented and discussed as well, respectively. The present work provides helpful clues for future designing Au dimer-based SERS substrates and LSPR RI sensors for chemical/biological sensing and detection.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N64eff8f26d73405ba501ac02178917e0
15 Nf1d8f0f5dd39462ab4f6b4c251374195
16 sg:journal.1036713
17 schema:keywords Au nanorods
18 LSPR peak wavelength
19 RI sensitivity
20 RI sensor
21 SERS Performances
22 SERS performance
23 SERS substrate
24 biological sensing
25 chemical/biological sensing
26 clues
27 configuration
28 counterparts
29 detection
30 dimers
31 dipole mode
32 distance 2
33 element method
34 factor G
35 factors
36 finite element method
37 fractional shift
38 gap region
39 gap size
40 geometry configuration
41 helpful clues
42 incident light
43 index sensitivity
44 light
45 method
46 mode
47 nanorods
48 peak wavelength
49 performance
50 plasmon rulers
51 present work
52 refractive index sensitivity
53 region
54 rulers
55 sensing
56 sensitivity
57 sensitivity factors
58 sensors
59 shift
60 size
61 substrate
62 terms
63 wavelength
64 work
65 schema:name Enhanced RI Sensitivity and SERS Performances of Individual Au Nanobipyramid Dimers
66 schema:pagination 485-491
67 schema:productId N5a80da98e4e540b1856a475ebda961a7
68 N72b3b4077e68421ca63a1ccf27ee75d0
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132060287
70 https://doi.org/10.1007/s11468-020-01302-8
71 schema:sdDatePublished 2022-09-02T16:04
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N6368cc32e4504ff18a3779a9bb4057aa
74 schema:url https://doi.org/10.1007/s11468-020-01302-8
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N11c3c2e3157f4189bc404dc7a186ee1f rdf:first sg:person.01042650013.62
79 rdf:rest rdf:nil
80 N2796cc729aaf4effac03c9a45af47618 rdf:first sg:person.07774025227.42
81 rdf:rest Nf31712b34abf4215922bf7ea48dfff37
82 N4ab3b1877da542d2bf664a8bc625ae24 rdf:first sg:person.010405277015.55
83 rdf:rest N6e3421ad55184b1cb5aaf3d194c35443
84 N5a80da98e4e540b1856a475ebda961a7 schema:name dimensions_id
85 schema:value pub.1132060287
86 rdf:type schema:PropertyValue
87 N6368cc32e4504ff18a3779a9bb4057aa schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N64eff8f26d73405ba501ac02178917e0 schema:issueNumber 2
90 rdf:type schema:PublicationIssue
91 N6e3421ad55184b1cb5aaf3d194c35443 rdf:first sg:person.016632323573.32
92 rdf:rest N2796cc729aaf4effac03c9a45af47618
93 N72b3b4077e68421ca63a1ccf27ee75d0 schema:name doi
94 schema:value 10.1007/s11468-020-01302-8
95 rdf:type schema:PropertyValue
96 N8ea01e31f8e44f4a96593252454b56ef rdf:first sg:person.013252104046.81
97 rdf:rest N4ab3b1877da542d2bf664a8bc625ae24
98 Nae18a660409a4883ac20b395b88e83dc rdf:first sg:person.011202657415.61
99 rdf:rest N8ea01e31f8e44f4a96593252454b56ef
100 Nf1d8f0f5dd39462ab4f6b4c251374195 schema:volumeNumber 16
101 rdf:type schema:PublicationVolume
102 Nf31712b34abf4215922bf7ea48dfff37 rdf:first sg:person.011126512450.35
103 rdf:rest N11c3c2e3157f4189bc404dc7a186ee1f
104 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
108 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
111 schema:name Other Physical Sciences
112 rdf:type schema:DefinedTerm
113 sg:journal.1036713 schema:issn 1557-1955
114 1557-1963
115 schema:name Plasmonics
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.010405277015.55 schema:affiliation grid-institutes:None
119 schema:familyName Chen
120 schema:givenName YangXi
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405277015.55
122 rdf:type schema:Person
123 sg:person.01042650013.62 schema:affiliation grid-institutes:None
124 schema:familyName Shi
125 schema:givenName DaNing
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042650013.62
127 rdf:type schema:Person
128 sg:person.011126512450.35 schema:affiliation grid-institutes:None
129 schema:familyName Sun
130 schema:givenName Lu
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126512450.35
132 rdf:type schema:Person
133 sg:person.011202657415.61 schema:affiliation grid-institutes:None
134 schema:familyName Fu
135 schema:givenName TianYi
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202657415.61
137 rdf:type schema:Person
138 sg:person.013252104046.81 schema:affiliation grid-institutes:None
139 schema:familyName Du
140 schema:givenName ChaoLing
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252104046.81
142 rdf:type schema:Person
143 sg:person.016632323573.32 schema:affiliation grid-institutes:None
144 schema:familyName Zhang
145 schema:givenName RuXin
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632323573.32
147 rdf:type schema:Person
148 sg:person.07774025227.42 schema:affiliation grid-institutes:None
149 schema:familyName Zhu
150 schema:givenName Yan
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42
152 rdf:type schema:Person
153 sg:pub.10.1007/s11468-015-9939-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031031537
154 https://doi.org/10.1007/s11468-015-9939-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11468-017-0685-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1100109257
157 https://doi.org/10.1007/s11468-017-0685-z
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ncomms8571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017486043
160 https://doi.org/10.1038/ncomms8571
161 rdf:type schema:CreativeWork
162 sg:pub.10.3938/jkps.72.599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101505225
163 https://doi.org/10.3938/jkps.72.599
164 rdf:type schema:CreativeWork
165 grid-institutes:None schema:alternateName College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People’s Republic of China
166 schema:name College of Science, Nanjing University of Aeronautics and Astronautics, 211100, Nanjing, People’s Republic of China
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...