Possible Plasmonic Acceleration of LED Modulation for Li-Fi Applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

D. V. Guzatov, S. V. Gaponenko, H. V. Demir

ABSTRACT

Emerging LED-based wireless visible light communication (Li-Fi) needs faster LED response to secure desirable modulation rates. Decay rate of an emitter can be enhanced by plasmonics, typically by an expense of efficiency loss because of non-radiative energy transfer. In this paper, metal-enhanced radiative and non-radiative decay rates are shown to be reasonably balanced to get with Ag nanoparticles nearly 100-fold enhancement of the decay rate for a blue LED without loss in overall efficacy. Additionally, gain in intensity occurs for intrinsic quantum yield Q0 < 1. With silver, rate enhancement can be performed through the whole visible. For color-converting phosphors, local field enhancement along with decay rate effects enable 30-fold rate enhancement with gain in efficacy. Since plasmonics always enhances decay rate, it can diminish Auger processes thus extending LED operation currents without efficiency droop. For quantum dot phosphors, plasmonic diminishing of Auger processes will improve photostability. More... »

PAGES

2133-2140

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-018-0730-6

DOI

http://dx.doi.org/10.1007/s11468-018-0730-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101369165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, 230023, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guzatov", 
        "givenName": "D. V.", 
        "id": "sg:person.01113211204.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113211204.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BI Stepanov Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.426545.4", 
          "name": [
            "B. I. Stepanov Institute of Physics, National Academy of Sciences, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaponenko", 
        "givenName": "S. V.", 
        "id": "sg:person.01011222057.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011222057.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanyang Technological University", 
          "id": "https://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "Department of Electrical and Electronics Engineering, Department of Physics, and UNAM\u2013Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey", 
            "LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demir", 
        "givenName": "H. V.", 
        "id": "sg:person.0710137426.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710137426.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/anie.201308516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001628652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/78/1/013901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003500368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2044649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009418056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012069273", 
          "https://doi.org/10.1038/ncomms1268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp301598w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012176100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.24.00a430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016170750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja711379k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017236775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja711379k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017236775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017750281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.177406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019943261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.177406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019943261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200801908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021936932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201500172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022682325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026970458", 
          "https://doi.org/10.1038/nphoton.2011.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra15585h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030136495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.24.000a33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038800173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jnp.8.087599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048173733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051655500", 
          "https://doi.org/10.1186/1556-276x-6-199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903592h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053619617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903592h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053619617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp203317d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056083113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp203317d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056083113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3552968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057972767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/qe2007v037n03abeh013322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058187380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tce.2004.1277847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061545201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.24.017916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065208375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.001623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pimrc.2000.881634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093866632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511750502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098663265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511524141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107278929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668309"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Emerging LED-based wireless visible light communication (Li-Fi) needs faster LED response to secure desirable modulation rates. Decay rate of an emitter can be enhanced by plasmonics, typically by an expense of efficiency loss because of non-radiative energy transfer. In this paper, metal-enhanced radiative and non-radiative decay rates are shown to be reasonably balanced to get with Ag nanoparticles nearly 100-fold enhancement of the decay rate for a blue LED without loss in overall efficacy. Additionally, gain in intensity occurs for intrinsic quantum yield Q0 < 1. With silver, rate enhancement can be performed through the whole visible. For color-converting phosphors, local field enhancement along with decay rate effects enable 30-fold rate enhancement with gain in efficacy. Since plasmonics always enhances decay rate, it can diminish Auger processes thus extending LED operation currents without efficiency droop. For quantum dot phosphors, plasmonic diminishing of Auger processes will improve photostability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11468-018-0730-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Possible Plasmonic Acceleration of LED Modulation for Li-Fi Applications", 
    "pagination": "2133-2140", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33d8fef2ebf7e4f7c53aa504f58506f210168559a2cf4a76bc9b607a06157327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-018-0730-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101369165"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-018-0730-6", 
      "https://app.dimensions.ai/details/publication/pub.1101369165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45360_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11468-018-0730-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-018-0730-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-018-0730-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-018-0730-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-018-0730-6'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-018-0730-6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nfdba7dc5c1124febad55a0a26ae6cdc0
4 schema:citation sg:pub.10.1038/ncomms1268
5 sg:pub.10.1038/nphoton.2011.25
6 sg:pub.10.1186/1556-276x-6-199
7 https://doi.org/10.1002/adma.200801908
8 https://doi.org/10.1002/adom.201500172
9 https://doi.org/10.1002/anie.201308516
10 https://doi.org/10.1017/cbo9780511524141
11 https://doi.org/10.1017/cbo9780511750502
12 https://doi.org/10.1017/cbo9781107278929
13 https://doi.org/10.1021/acsphotonics.6b00357
14 https://doi.org/10.1021/ja711379k
15 https://doi.org/10.1021/jp203317d
16 https://doi.org/10.1021/jp301598w
17 https://doi.org/10.1021/nl903592h
18 https://doi.org/10.1039/c4ra15585h
19 https://doi.org/10.1063/1.3552968
20 https://doi.org/10.1070/qe2007v037n03abeh013322
21 https://doi.org/10.1088/0034-4885/78/1/013901
22 https://doi.org/10.1103/physrevb.6.4370
23 https://doi.org/10.1103/physrevlett.110.177406
24 https://doi.org/10.1109/pimrc.2000.881634
25 https://doi.org/10.1109/tce.2004.1277847
26 https://doi.org/10.1117/1.jnp.8.087599
27 https://doi.org/10.1117/12.2044649
28 https://doi.org/10.1126/science.1111886
29 https://doi.org/10.1364/oe.24.000a33
30 https://doi.org/10.1364/oe.24.00a430
31 https://doi.org/10.1364/oe.24.017916
32 https://doi.org/10.1364/ol.32.001623
33 schema:datePublished 2018-12
34 schema:datePublishedReg 2018-12-01
35 schema:description Emerging LED-based wireless visible light communication (Li-Fi) needs faster LED response to secure desirable modulation rates. Decay rate of an emitter can be enhanced by plasmonics, typically by an expense of efficiency loss because of non-radiative energy transfer. In this paper, metal-enhanced radiative and non-radiative decay rates are shown to be reasonably balanced to get with Ag nanoparticles nearly 100-fold enhancement of the decay rate for a blue LED without loss in overall efficacy. Additionally, gain in intensity occurs for intrinsic quantum yield Q0 < 1. With silver, rate enhancement can be performed through the whole visible. For color-converting phosphors, local field enhancement along with decay rate effects enable 30-fold rate enhancement with gain in efficacy. Since plasmonics always enhances decay rate, it can diminish Auger processes thus extending LED operation currents without efficiency droop. For quantum dot phosphors, plasmonic diminishing of Auger processes will improve photostability.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N2816a15903234de1b8a80e9250e8abb0
40 Ne2cf58c70f5c46b4a34977df21a2d312
41 sg:journal.1036713
42 schema:name Possible Plasmonic Acceleration of LED Modulation for Li-Fi Applications
43 schema:pagination 2133-2140
44 schema:productId N7f239510f7804bdd838b1daaad0448f8
45 Nc9415f3baece4e5dafd9dde8a3d09c80
46 Nfd79aac9075a4d5ca74556cb0c614091
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101369165
48 https://doi.org/10.1007/s11468-018-0730-6
49 schema:sdDatePublished 2019-04-11T11:12
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nf70d23e1487040e0a47dfaccd8495efb
52 schema:url https://link.springer.com/10.1007%2Fs11468-018-0730-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2816a15903234de1b8a80e9250e8abb0 schema:issueNumber 6
57 rdf:type schema:PublicationIssue
58 N7f239510f7804bdd838b1daaad0448f8 schema:name dimensions_id
59 schema:value pub.1101369165
60 rdf:type schema:PropertyValue
61 Nc9415f3baece4e5dafd9dde8a3d09c80 schema:name readcube_id
62 schema:value 33d8fef2ebf7e4f7c53aa504f58506f210168559a2cf4a76bc9b607a06157327
63 rdf:type schema:PropertyValue
64 Ncd6297020d0f4b81b1325598a24d858e rdf:first sg:person.0710137426.37
65 rdf:rest rdf:nil
66 Ne2cf58c70f5c46b4a34977df21a2d312 schema:volumeNumber 13
67 rdf:type schema:PublicationVolume
68 Ne66d0bc6d72546c4ba776a6c8192ce02 rdf:first sg:person.01011222057.44
69 rdf:rest Ncd6297020d0f4b81b1325598a24d858e
70 Nf70d23e1487040e0a47dfaccd8495efb schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nfd79aac9075a4d5ca74556cb0c614091 schema:name doi
73 schema:value 10.1007/s11468-018-0730-6
74 rdf:type schema:PropertyValue
75 Nfdba7dc5c1124febad55a0a26ae6cdc0 rdf:first sg:person.01113211204.02
76 rdf:rest Ne66d0bc6d72546c4ba776a6c8192ce02
77 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
78 schema:name Chemical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Chemistry (incl. Structural)
82 rdf:type schema:DefinedTerm
83 sg:journal.1036713 schema:issn 1557-1955
84 1557-1963
85 schema:name Plasmonics
86 rdf:type schema:Periodical
87 sg:person.01011222057.44 schema:affiliation https://www.grid.ac/institutes/grid.426545.4
88 schema:familyName Gaponenko
89 schema:givenName S. V.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011222057.44
91 rdf:type schema:Person
92 sg:person.01113211204.02 schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
93 schema:familyName Guzatov
94 schema:givenName D. V.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113211204.02
96 rdf:type schema:Person
97 sg:person.0710137426.37 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
98 schema:familyName Demir
99 schema:givenName H. V.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710137426.37
101 rdf:type schema:Person
102 sg:pub.10.1038/ncomms1268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012069273
103 https://doi.org/10.1038/ncomms1268
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nphoton.2011.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026970458
106 https://doi.org/10.1038/nphoton.2011.25
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/1556-276x-6-199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051655500
109 https://doi.org/10.1186/1556-276x-6-199
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/adma.200801908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021936932
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/adom.201500172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022682325
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/anie.201308516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001628652
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1017/cbo9780511524141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665308
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1017/cbo9780511750502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663265
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1017/cbo9781107278929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668309
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/acsphotonics.6b00357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138995
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/ja711379k schema:sameAs https://app.dimensions.ai/details/publication/pub.1017236775
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/jp203317d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056083113
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/jp301598w schema:sameAs https://app.dimensions.ai/details/publication/pub.1012176100
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/nl903592h schema:sameAs https://app.dimensions.ai/details/publication/pub.1053619617
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1039/c4ra15585h schema:sameAs https://app.dimensions.ai/details/publication/pub.1030136495
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.3552968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057972767
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1070/qe2007v037n03abeh013322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058187380
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/0034-4885/78/1/013901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003500368
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.110.177406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019943261
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/pimrc.2000.881634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093866632
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tce.2004.1277847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061545201
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1117/1.jnp.8.087599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048173733
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1117/12.2044649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009418056
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1111886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017750281
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1364/oe.24.000a33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038800173
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1364/oe.24.00a430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016170750
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1364/oe.24.017916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065208375
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1364/ol.32.001623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225009
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.426545.4 schema:alternateName BI Stepanov Institute of Physics
164 schema:name B. I. Stepanov Institute of Physics, National Academy of Sciences, 220072, Minsk, Belarus
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
167 schema:name Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
168 LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore, Singapore
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.78041.3a schema:alternateName Yanka Kupala State University of Grodno
171 schema:name Yanka Kupala State University of Grodno, 230023, Grodno, Belarus
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...