Designing a High Performance Phase Gradient Metasurface Using Optical Patch Antennas with Different Patch Thicknesses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-04

AUTHORS

Amin Vahdat-Ahar, Mohammad Hashem Vadjed Samiei

ABSTRACT

Patch-based metasurfaces as generic structures of the reflective flat optical devices, such as flat mirrors, waveplates, polarizer, and holograms, should fulfill two basic requirements of covering 0 to 2π phase shift range and providing a sufficiently high reflection amplitude. Under the current design paradigm, the design process has been based only on the width and length of the patch elements of the metasurfaces. The present study will exploit the potentials of the thickness of the patch elements as a design parameter. While for a metasurface based on patch elements with thickness of 50 nm, a phase shift coverage near 270°, corresponding to 90° phase steps, and reflection amplitude of 0.8 in the wavelength 775 nm are achievable, using just one additional value of 30 nm for thicknesses of the patches will increase the phase shift coverage to 320°, corresponding to 40° phase steps, with reflection amplitude higher than 0.85 in the same wavelength. In this way, the phase steps could be much smaller which means more closely approximating a targeted phase pattern. This would be evidently a remarkable performance improvement, which in the case of a polarization beam splitter, as shown, means reflecting more amount of energy in the desired angles. More... »

PAGES

71-80

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-016-0485-x

DOI

http://dx.doi.org/10.1007/s11468-016-0485-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021633404


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Iran University of Science and Technology, Tehran, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411748.f", 
          "name": [
            "Iran University of Science and Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vahdat-Ahar", 
        "givenName": "Amin", 
        "id": "sg:person.014630202611.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630202611.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran University of Science and Technology, Tehran, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411748.f", 
          "name": [
            "Iran University of Science and Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samiei", 
        "givenName": "Mohammad Hashem Vadjed", 
        "id": "sg:person.01044566320.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044566320.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep43722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131627", 
          "https://doi.org/10.1038/srep43722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050755471", 
          "https://doi.org/10.1038/srep15941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-37825-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028255731", 
          "https://doi.org/10.1007/0-387-37825-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97074-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013377937", 
          "https://doi.org/10.1007/978-3-642-97074-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053419190", 
          "https://doi.org/10.1038/srep02155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-04", 
    "datePublishedReg": "2017-01-04", 
    "description": "Patch-based metasurfaces as generic structures of the reflective flat optical devices, such as flat mirrors, waveplates, polarizer, and holograms, should fulfill two basic requirements of covering 0 to 2\u03c0 phase shift range and providing a sufficiently high reflection amplitude. Under the current design paradigm, the design process has been based only on the width and length of the patch elements of the metasurfaces. The present study will exploit the potentials of the thickness of the patch elements as a design parameter. While for a metasurface based on patch elements with thickness of 50\u00a0nm, a phase shift coverage near 270\u00b0, corresponding to 90\u00b0 phase steps, and reflection amplitude of 0.8 in the wavelength 775\u00a0nm are achievable, using just one additional value of 30\u00a0nm for thicknesses of the patches will increase the phase shift coverage to 320\u00b0, corresponding to 40\u00b0 phase steps, with reflection amplitude higher than 0.85 in the same wavelength. In this way, the phase steps could be much smaller which means more closely approximating a targeted phase pattern. This would be evidently a remarkable performance improvement, which in the case of a polarization beam splitter, as shown, means reflecting more amount of energy in the desired angles.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-016-0485-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "phase shift coverage", 
      "patch elements", 
      "shift coverage", 
      "flat optical devices", 
      "optical patch antennas", 
      "polarization beam splitter", 
      "patch antenna", 
      "phase shift range", 
      "different patch thicknesses", 
      "optical devices", 
      "remarkable performance improvement", 
      "phase step", 
      "high reflection amplitude", 
      "metasurface", 
      "beam splitter", 
      "same wavelength", 
      "current design paradigm", 
      "performance improvement", 
      "design paradigm", 
      "antenna", 
      "flat mirror", 
      "more amount", 
      "phase patterns", 
      "splitter", 
      "shift range", 
      "waveplates", 
      "devices", 
      "polarizer", 
      "wavelength", 
      "thickness", 
      "basic requirements", 
      "reflection amplitudes", 
      "design parameters", 
      "coverage", 
      "holograms", 
      "mirror", 
      "patch thickness", 
      "step", 
      "patches", 
      "requirements", 
      "range", 
      "elements", 
      "potential", 
      "structure", 
      "energy", 
      "design process", 
      "width", 
      "improvement", 
      "angle", 
      "amount", 
      "process", 
      "paradigm", 
      "length", 
      "amplitude", 
      "parameters", 
      "way", 
      "reflection", 
      "generic structure", 
      "values", 
      "present study", 
      "patterns", 
      "additional value", 
      "study", 
      "cases"
    ], 
    "name": "Designing a High Performance Phase Gradient Metasurface Using Optical Patch Antennas with Different Patch Thicknesses", 
    "pagination": "71-80", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021633404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-016-0485-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-016-0485-x", 
      "https://app.dimensions.ai/details/publication/pub.1021633404"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_730.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-016-0485-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0485-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0485-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0485-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0485-x'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      94 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-016-0485-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author Ndbc31039c36445b1851885764a5b62a4
5 schema:citation sg:pub.10.1007/0-387-37825-1
6 sg:pub.10.1007/978-3-642-97074-0_2
7 sg:pub.10.1038/srep02155
8 sg:pub.10.1038/srep15941
9 sg:pub.10.1038/srep43722
10 schema:datePublished 2017-01-04
11 schema:datePublishedReg 2017-01-04
12 schema:description Patch-based metasurfaces as generic structures of the reflective flat optical devices, such as flat mirrors, waveplates, polarizer, and holograms, should fulfill two basic requirements of covering 0 to 2π phase shift range and providing a sufficiently high reflection amplitude. Under the current design paradigm, the design process has been based only on the width and length of the patch elements of the metasurfaces. The present study will exploit the potentials of the thickness of the patch elements as a design parameter. While for a metasurface based on patch elements with thickness of 50 nm, a phase shift coverage near 270°, corresponding to 90° phase steps, and reflection amplitude of 0.8 in the wavelength 775 nm are achievable, using just one additional value of 30 nm for thicknesses of the patches will increase the phase shift coverage to 320°, corresponding to 40° phase steps, with reflection amplitude higher than 0.85 in the same wavelength. In this way, the phase steps could be much smaller which means more closely approximating a targeted phase pattern. This would be evidently a remarkable performance improvement, which in the case of a polarization beam splitter, as shown, means reflecting more amount of energy in the desired angles.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N0f099c4dda61418faceb9ced4de618e3
16 Nf19846a5bf3d483c94611d691fd42ed9
17 sg:journal.1036713
18 schema:keywords additional value
19 amount
20 amplitude
21 angle
22 antenna
23 basic requirements
24 beam splitter
25 cases
26 coverage
27 current design paradigm
28 design paradigm
29 design parameters
30 design process
31 devices
32 different patch thicknesses
33 elements
34 energy
35 flat mirror
36 flat optical devices
37 generic structure
38 high reflection amplitude
39 holograms
40 improvement
41 length
42 metasurface
43 mirror
44 more amount
45 optical devices
46 optical patch antennas
47 paradigm
48 parameters
49 patch antenna
50 patch elements
51 patch thickness
52 patches
53 patterns
54 performance improvement
55 phase patterns
56 phase shift coverage
57 phase shift range
58 phase step
59 polarization beam splitter
60 polarizer
61 potential
62 present study
63 process
64 range
65 reflection
66 reflection amplitudes
67 remarkable performance improvement
68 requirements
69 same wavelength
70 shift coverage
71 shift range
72 splitter
73 step
74 structure
75 study
76 thickness
77 values
78 wavelength
79 waveplates
80 way
81 width
82 schema:name Designing a High Performance Phase Gradient Metasurface Using Optical Patch Antennas with Different Patch Thicknesses
83 schema:pagination 71-80
84 schema:productId N10cec7f5764b4e24bac759a16fccd716
85 N80926a0f2db54c24b05007bdb6d3141b
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021633404
87 https://doi.org/10.1007/s11468-016-0485-x
88 schema:sdDatePublished 2022-08-04T17:04
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nb10989c43a544991b4144a59de59faf4
91 schema:url https://doi.org/10.1007/s11468-016-0485-x
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N0f099c4dda61418faceb9ced4de618e3 schema:volumeNumber 13
96 rdf:type schema:PublicationVolume
97 N10cec7f5764b4e24bac759a16fccd716 schema:name doi
98 schema:value 10.1007/s11468-016-0485-x
99 rdf:type schema:PropertyValue
100 N3a5c4dc4b55142a49ad2a071b59824fc rdf:first sg:person.01044566320.79
101 rdf:rest rdf:nil
102 N80926a0f2db54c24b05007bdb6d3141b schema:name dimensions_id
103 schema:value pub.1021633404
104 rdf:type schema:PropertyValue
105 Nb10989c43a544991b4144a59de59faf4 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Ndbc31039c36445b1851885764a5b62a4 rdf:first sg:person.014630202611.02
108 rdf:rest N3a5c4dc4b55142a49ad2a071b59824fc
109 Nf19846a5bf3d483c94611d691fd42ed9 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
115 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
118 schema:name Other Physical Sciences
119 rdf:type schema:DefinedTerm
120 sg:journal.1036713 schema:issn 1557-1955
121 1557-1963
122 schema:name Plasmonics
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01044566320.79 schema:affiliation grid-institutes:grid.411748.f
126 schema:familyName Samiei
127 schema:givenName Mohammad Hashem Vadjed
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044566320.79
129 rdf:type schema:Person
130 sg:person.014630202611.02 schema:affiliation grid-institutes:grid.411748.f
131 schema:familyName Vahdat-Ahar
132 schema:givenName Amin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630202611.02
134 rdf:type schema:Person
135 sg:pub.10.1007/0-387-37825-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028255731
136 https://doi.org/10.1007/0-387-37825-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-642-97074-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013377937
139 https://doi.org/10.1007/978-3-642-97074-0_2
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/srep02155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053419190
142 https://doi.org/10.1038/srep02155
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/srep15941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050755471
145 https://doi.org/10.1038/srep15941
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep43722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131627
148 https://doi.org/10.1038/srep43722
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.411748.f schema:alternateName Iran University of Science and Technology, Tehran, Iran
151 schema:name Iran University of Science and Technology, Tehran, Iran
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...