High-Performance Tunable Plasmonic Absorber Based on the Metal-Insulator-Metal Grating Nanostructure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05-06

AUTHORS

Jianguo Lei, Boyu Ji, Jingquan Lin

ABSTRACT

A new high-performance plasmonic absorber based on the metal-insulator-metal grating nanostructure is proposed and numerically studied. The effect of geometric parameters of grating stripe and insulator layer on light absorption is investigated. Four main absorption bands with efficiencies nearly 100 % are obtained by modulating duty cycle of the metal grating, which show redshift with the increased stripe width. The physical mechanism responsible for the absorption is discussed based on distributions of the magnetic field and the Poynting vector and is found to be different for the four bands. It is also found that perfect absorption of the nanostructure can be achieved when the insulator layer thickness ranges from 20 to 70 nm; meanwhile, the resonant wavelength corresponding to perfect absorption can be tuned and it shifts towards red side with the increase of the grating thickness when the air slit is narrow. The proposed highly efficient light absorber exhibits a very simple geometrical structure and is easy to be fabricated, which has potential applications in photonic device, such as photodetectors, sensors, and so on. More... »

PAGES

151-156

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-016-0242-1

DOI

http://dx.doi.org/10.1007/s11468-016-0242-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041929213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Science, Changchun University of Science and Technology, 130022, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.440668.8", 
          "name": [
            "School of Science, Changchun University of Science and Technology, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Jianguo", 
        "id": "sg:person.015247622125.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247622125.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Changchun University of Science and Technology, 130022, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.440668.8", 
          "name": [
            "School of Science, Changchun University of Science and Technology, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Boyu", 
        "id": "sg:person.07645047515.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645047515.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Changchun University of Science and Technology, 130022, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.440668.8", 
          "name": [
            "School of Science, Changchun University of Science and Technology, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Jingquan", 
        "id": "sg:person.014441231351.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441231351.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep01194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021217247", 
          "https://doi.org/10.1038/srep01194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004214305", 
          "https://doi.org/10.1038/srep04901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031039656", 
          "https://doi.org/10.1038/ncomms1528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0048317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085164077", 
          "https://doi.org/10.1007/bfb0048317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-014-9823-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014556760", 
          "https://doi.org/10.1007/s11468-014-9823-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13320-015-0244-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032875214", 
          "https://doi.org/10.1007/s13320-015-0244-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012227552", 
          "https://doi.org/10.1038/nmat2810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-010-9155-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030251477", 
          "https://doi.org/10.1007/s11468-010-9155-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007947781", 
          "https://doi.org/10.1038/nphoton.2009.282"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-06", 
    "datePublishedReg": "2016-05-06", 
    "description": "A new high-performance plasmonic absorber based on the metal-insulator-metal grating nanostructure is proposed and numerically studied. The effect of geometric parameters of grating stripe and insulator layer on light absorption is investigated. Four main absorption bands with efficiencies nearly 100\u00a0% are obtained by modulating duty cycle of the metal grating, which show redshift with the increased stripe width. The physical mechanism responsible for the absorption is discussed based on distributions of the magnetic field and the Poynting vector and is found to be different for the four bands. It is also found that perfect absorption of the nanostructure can be achieved when the insulator layer thickness ranges from 20 to 70\u00a0nm; meanwhile, the resonant wavelength corresponding to perfect absorption can be tuned and it shifts towards red side with the increase of the grating thickness when the air slit is narrow. The proposed highly efficient light absorber exhibits a very simple geometrical structure and is easy to be fabricated, which has potential applications in photonic device, such as photodetectors, sensors, and so on.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-016-0242-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8120777", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8120776", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "grating nanostructure", 
      "perfect absorption", 
      "plasmonic absorber", 
      "tunable plasmonic absorber", 
      "efficient light absorbers", 
      "insulator layer thickness", 
      "photonic devices", 
      "resonant wavelength", 
      "metal grating", 
      "grating thickness", 
      "grating stripes", 
      "red side", 
      "main absorption bands", 
      "magnetic field", 
      "air slit", 
      "Poynting vector", 
      "stripe width", 
      "light absorption", 
      "insulator layer", 
      "light absorber", 
      "Metal-Insulator", 
      "absorption bands", 
      "physical mechanisms", 
      "layer thickness", 
      "duty cycle", 
      "geometric parameters", 
      "simple geometrical structure", 
      "nanostructures", 
      "geometrical structure", 
      "absorber", 
      "absorption", 
      "potential applications", 
      "redshift", 
      "thickness", 
      "band", 
      "grating", 
      "photodetectors", 
      "wavelength", 
      "slit", 
      "sensors", 
      "width", 
      "stripes", 
      "layer", 
      "devices", 
      "field", 
      "efficiency", 
      "applications", 
      "parameters", 
      "structure", 
      "cycle", 
      "distribution", 
      "side", 
      "increase", 
      "effect", 
      "mechanism", 
      "vector"
    ], 
    "name": "High-Performance Tunable Plasmonic Absorber Based on the Metal-Insulator-Metal Grating Nanostructure", 
    "pagination": "151-156", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041929213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-016-0242-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-016-0242-1", 
      "https://app.dimensions.ai/details/publication/pub.1041929213"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_712.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-016-0242-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0242-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0242-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0242-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-016-0242-1'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      90 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-016-0242-1 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author Ne25a4fbcda14425aaa313ab6f7803108
5 schema:citation sg:pub.10.1007/bfb0048317
6 sg:pub.10.1007/s11468-010-9155-6
7 sg:pub.10.1007/s11468-014-9823-z
8 sg:pub.10.1007/s13320-015-0244-1
9 sg:pub.10.1038/ncomms1528
10 sg:pub.10.1038/nmat2810
11 sg:pub.10.1038/nphoton.2009.282
12 sg:pub.10.1038/srep01194
13 sg:pub.10.1038/srep04901
14 schema:datePublished 2016-05-06
15 schema:datePublishedReg 2016-05-06
16 schema:description A new high-performance plasmonic absorber based on the metal-insulator-metal grating nanostructure is proposed and numerically studied. The effect of geometric parameters of grating stripe and insulator layer on light absorption is investigated. Four main absorption bands with efficiencies nearly 100 % are obtained by modulating duty cycle of the metal grating, which show redshift with the increased stripe width. The physical mechanism responsible for the absorption is discussed based on distributions of the magnetic field and the Poynting vector and is found to be different for the four bands. It is also found that perfect absorption of the nanostructure can be achieved when the insulator layer thickness ranges from 20 to 70 nm; meanwhile, the resonant wavelength corresponding to perfect absorption can be tuned and it shifts towards red side with the increase of the grating thickness when the air slit is narrow. The proposed highly efficient light absorber exhibits a very simple geometrical structure and is easy to be fabricated, which has potential applications in photonic device, such as photodetectors, sensors, and so on.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N6f3f944128fc4df69d78b55d2d035800
20 N8466a088788342ffbbbbb81ebf987282
21 sg:journal.1036713
22 schema:keywords Metal-Insulator
23 Poynting vector
24 absorber
25 absorption
26 absorption bands
27 air slit
28 applications
29 band
30 cycle
31 devices
32 distribution
33 duty cycle
34 effect
35 efficiency
36 efficient light absorbers
37 field
38 geometric parameters
39 geometrical structure
40 grating
41 grating nanostructure
42 grating stripes
43 grating thickness
44 increase
45 insulator layer
46 insulator layer thickness
47 layer
48 layer thickness
49 light absorber
50 light absorption
51 magnetic field
52 main absorption bands
53 mechanism
54 metal grating
55 nanostructures
56 parameters
57 perfect absorption
58 photodetectors
59 photonic devices
60 physical mechanisms
61 plasmonic absorber
62 potential applications
63 red side
64 redshift
65 resonant wavelength
66 sensors
67 side
68 simple geometrical structure
69 slit
70 stripe width
71 stripes
72 structure
73 thickness
74 tunable plasmonic absorber
75 vector
76 wavelength
77 width
78 schema:name High-Performance Tunable Plasmonic Absorber Based on the Metal-Insulator-Metal Grating Nanostructure
79 schema:pagination 151-156
80 schema:productId N377e1f80a54a422a844b56009724f59b
81 N92481f4b42b54989b8d35a6328848d4f
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041929213
83 https://doi.org/10.1007/s11468-016-0242-1
84 schema:sdDatePublished 2022-11-24T21:00
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N1db43408f7f7467c9f6a2334a8376b6e
87 schema:url https://doi.org/10.1007/s11468-016-0242-1
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N1db43408f7f7467c9f6a2334a8376b6e schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N377e1f80a54a422a844b56009724f59b schema:name dimensions_id
94 schema:value pub.1041929213
95 rdf:type schema:PropertyValue
96 N6f3f944128fc4df69d78b55d2d035800 schema:volumeNumber 12
97 rdf:type schema:PublicationVolume
98 N8466a088788342ffbbbbb81ebf987282 schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 N92481f4b42b54989b8d35a6328848d4f schema:name doi
101 schema:value 10.1007/s11468-016-0242-1
102 rdf:type schema:PropertyValue
103 Nbd754d6fa8274188952ee54b3aed8f57 rdf:first sg:person.014441231351.87
104 rdf:rest rdf:nil
105 Ne25a4fbcda14425aaa313ab6f7803108 rdf:first sg:person.015247622125.20
106 rdf:rest Nf89f73cb4f4c4a11ac9ea65c32cbaf1e
107 Nf89f73cb4f4c4a11ac9ea65c32cbaf1e rdf:first sg:person.07645047515.05
108 rdf:rest Nbd754d6fa8274188952ee54b3aed8f57
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
113 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
116 schema:name Other Physical Sciences
117 rdf:type schema:DefinedTerm
118 sg:grant.8120776 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-016-0242-1
119 rdf:type schema:MonetaryGrant
120 sg:grant.8120777 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-016-0242-1
121 rdf:type schema:MonetaryGrant
122 sg:journal.1036713 schema:issn 1557-1955
123 1557-1963
124 schema:name Plasmonics
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.014441231351.87 schema:affiliation grid-institutes:grid.440668.8
128 schema:familyName Lin
129 schema:givenName Jingquan
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441231351.87
131 rdf:type schema:Person
132 sg:person.015247622125.20 schema:affiliation grid-institutes:grid.440668.8
133 schema:familyName Lei
134 schema:givenName Jianguo
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247622125.20
136 rdf:type schema:Person
137 sg:person.07645047515.05 schema:affiliation grid-institutes:grid.440668.8
138 schema:familyName Ji
139 schema:givenName Boyu
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645047515.05
141 rdf:type schema:Person
142 sg:pub.10.1007/bfb0048317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085164077
143 https://doi.org/10.1007/bfb0048317
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11468-010-9155-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030251477
146 https://doi.org/10.1007/s11468-010-9155-6
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11468-014-9823-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014556760
149 https://doi.org/10.1007/s11468-014-9823-z
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s13320-015-0244-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032875214
152 https://doi.org/10.1007/s13320-015-0244-1
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/ncomms1528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031039656
155 https://doi.org/10.1038/ncomms1528
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nmat2810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012227552
158 https://doi.org/10.1038/nmat2810
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nphoton.2009.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007947781
161 https://doi.org/10.1038/nphoton.2009.282
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/srep01194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021217247
164 https://doi.org/10.1038/srep01194
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/srep04901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004214305
167 https://doi.org/10.1038/srep04901
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.440668.8 schema:alternateName School of Science, Changchun University of Science and Technology, 130022, Changchun, China
170 schema:name School of Science, Changchun University of Science and Technology, 130022, Changchun, China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...