Probing the Plasmon-Phonon Hybridization in Supported Graphene by Externally Moving Charged Particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

Tijana Marinković, Ivan Radović, Duško Borka, Zoran L. Mišković

ABSTRACT

We use the dielectric response formalism to show how an incident charged particle may be used to probe the hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a SiO2 substrate. Strong effects of this hybridization are found in the wake pattern in the induced potential, as well as in the stopping and image forces that act on the incident charge in a broad range of its velocities. Particularly intriguing is the possibility to control the plasmon-phonon hybridization by varying the doping density of graphene, where the regime of a nominally neutral graphene is expected to give rise to dramatic effects in the energy loss of charged particles that move at the velocities below the Fermi velocity of graphene. More... »

PAGES

1741-1749

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-015-9993-3

DOI

http://dx.doi.org/10.1007/s11468-015-9993-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044985974


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Vin\u010da Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinkovi\u0107", 
        "givenName": "Tijana", 
        "id": "sg:person.01061412700.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061412700.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Vin\u010da Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radovi\u0107", 
        "givenName": "Ivan", 
        "id": "sg:person.014175602217.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014175602217.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Belgrade", 
          "id": "https://www.grid.ac/institutes/grid.7149.b", 
          "name": [
            "Vin\u010da Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borka", 
        "givenName": "Du\u0161ko", 
        "id": "sg:person.013552473221.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013552473221.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada", 
            "Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mi\u0161kovi\u0107", 
        "givenName": "Zoran L.", 
        "id": "sg:person.015510533203.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510533203.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.80.195405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002242616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.195405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002242616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007038178", 
          "https://doi.org/10.1038/nnano.2011.146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.195406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007094170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.195406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007094170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009176316", 
          "https://doi.org/10.1038/nphoton.2013.57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2014.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009600888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.236601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.236601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(92)95760-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013873873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(92)95760-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013873873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015873393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015873393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr03143a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016016695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2011.08.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020112860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020457785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020457785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021579466", 
          "https://doi.org/10.1038/nnano.2012.59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/13/134017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021866260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/13/134017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021866260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn406627u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026971401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201771h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030038839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201771h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030038839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(92)95831-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034845881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(92)95831-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034845881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3683534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036022244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/12/318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038803669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.008353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039193750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.008353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039193750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.201413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.201413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.205412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041646458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.205412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041646458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1202691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045341924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2011.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045856741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/25/35/355009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046260259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2014.11.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050663315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl202362d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl202362d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl500969t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1405826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057703413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/6/063015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.012903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.012903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.2663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.2663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.201403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.201403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.245435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.245435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.081406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.081406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.125442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.125442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.019690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065201202"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "We use the dielectric response formalism to show how an incident charged particle may be used to probe the hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a SiO2 substrate. Strong effects of this hybridization are found in the wake pattern in the induced potential, as well as in the stopping and image forces that act on the incident charge in a broad range of its velocities. Particularly intriguing is the possibility to control the plasmon-phonon hybridization by varying the doping density of graphene, where the regime of a nominally neutral graphene is expected to give rise to dramatic effects in the energy loss of charged particles that move at the velocities below the Fermi velocity of graphene.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11468-015-9993-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2925661", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2940302", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Probing the Plasmon-Phonon Hybridization in Supported Graphene by Externally Moving Charged Particles", 
    "pagination": "1741-1749", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6487da605a454670670b447af5dbe8357d8a2df47eed0187a0f913d441437e3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-015-9993-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044985974"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-015-9993-3", 
      "https://app.dimensions.ai/details/publication/pub.1044985974"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11468-015-9993-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9993-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9993-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9993-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9993-3'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-015-9993-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N5356a9af5c454f94938cb59f4dc08351
4 schema:citation sg:pub.10.1038/nnano.2011.146
5 sg:pub.10.1038/nnano.2012.59
6 sg:pub.10.1038/nphoton.2010.186
7 sg:pub.10.1038/nphoton.2013.57
8 https://doi.org/10.1016/0168-583x(92)95760-o
9 https://doi.org/10.1016/0168-583x(92)95831-b
10 https://doi.org/10.1016/j.nimb.2011.10.028
11 https://doi.org/10.1016/j.physleta.2011.08.053
12 https://doi.org/10.1016/j.physleta.2014.06.001
13 https://doi.org/10.1016/j.physleta.2014.11.044
14 https://doi.org/10.1021/nl070613a
15 https://doi.org/10.1021/nl201771h
16 https://doi.org/10.1021/nl202362d
17 https://doi.org/10.1021/nl500969t
18 https://doi.org/10.1021/nn406627u
19 https://doi.org/10.1039/c4nr03143a
20 https://doi.org/10.1063/1.1405826
21 https://doi.org/10.1063/1.3683534
22 https://doi.org/10.1088/0953-8984/25/35/355009
23 https://doi.org/10.1088/0957-4484/21/13/134017
24 https://doi.org/10.1088/1367-2630/16/6/063015
25 https://doi.org/10.1088/1367-2630/8/12/318
26 https://doi.org/10.1103/physreva.72.012903
27 https://doi.org/10.1103/physrevb.34.979
28 https://doi.org/10.1103/physrevb.46.2663
29 https://doi.org/10.1103/physrevb.75.205418
30 https://doi.org/10.1103/physrevb.78.201403
31 https://doi.org/10.1103/physrevb.80.195405
32 https://doi.org/10.1103/physrevb.80.245435
33 https://doi.org/10.1103/physrevb.81.081406
34 https://doi.org/10.1103/physrevb.82.195406
35 https://doi.org/10.1103/physrevb.82.201413
36 https://doi.org/10.1103/physrevb.86.125442
37 https://doi.org/10.1103/physrevb.86.165419
38 https://doi.org/10.1103/physrevb.88.205412
39 https://doi.org/10.1103/physrevlett.83.5378
40 https://doi.org/10.1103/physrevlett.85.3137
41 https://doi.org/10.1103/physrevlett.98.236601
42 https://doi.org/10.1103/revmodphys.81.109
43 https://doi.org/10.1103/revmodphys.83.407
44 https://doi.org/10.1126/science.1202691
45 https://doi.org/10.1364/oe.18.008353
46 https://doi.org/10.1364/oe.20.019690
47 schema:datePublished 2015-12
48 schema:datePublishedReg 2015-12-01
49 schema:description We use the dielectric response formalism to show how an incident charged particle may be used to probe the hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a SiO2 substrate. Strong effects of this hybridization are found in the wake pattern in the induced potential, as well as in the stopping and image forces that act on the incident charge in a broad range of its velocities. Particularly intriguing is the possibility to control the plasmon-phonon hybridization by varying the doping density of graphene, where the regime of a nominally neutral graphene is expected to give rise to dramatic effects in the energy loss of charged particles that move at the velocities below the Fermi velocity of graphene.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N07be709eaf99414292eb6d60625fe801
54 N361b6e6aae134f7eb15cb019ee86fe97
55 sg:journal.1036713
56 schema:name Probing the Plasmon-Phonon Hybridization in Supported Graphene by Externally Moving Charged Particles
57 schema:pagination 1741-1749
58 schema:productId N2176b1ad25374c4dae6ed5211be5cdd6
59 N646683ab44ec4f3fa3f278d7fc698aaf
60 Neabc362b411b4f9bb56dba58b8a7e2df
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044985974
62 https://doi.org/10.1007/s11468-015-9993-3
63 schema:sdDatePublished 2019-04-11T01:10
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Na686634976614a298cafcd9f66a10471
66 schema:url http://link.springer.com/10.1007%2Fs11468-015-9993-3
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N07be709eaf99414292eb6d60625fe801 schema:issueNumber 6
71 rdf:type schema:PublicationIssue
72 N2176b1ad25374c4dae6ed5211be5cdd6 schema:name doi
73 schema:value 10.1007/s11468-015-9993-3
74 rdf:type schema:PropertyValue
75 N2b2a77c790d24d8082ea627fa529fb27 rdf:first sg:person.014175602217.15
76 rdf:rest N5f8ac884f94f42e1bd139c6dabd20b8a
77 N2f40645c5c76484788c133b642fafdcd rdf:first sg:person.015510533203.05
78 rdf:rest rdf:nil
79 N361b6e6aae134f7eb15cb019ee86fe97 schema:volumeNumber 10
80 rdf:type schema:PublicationVolume
81 N5356a9af5c454f94938cb59f4dc08351 rdf:first sg:person.01061412700.49
82 rdf:rest N2b2a77c790d24d8082ea627fa529fb27
83 N5f8ac884f94f42e1bd139c6dabd20b8a rdf:first sg:person.013552473221.05
84 rdf:rest N2f40645c5c76484788c133b642fafdcd
85 N646683ab44ec4f3fa3f278d7fc698aaf schema:name readcube_id
86 schema:value d6487da605a454670670b447af5dbe8357d8a2df47eed0187a0f913d441437e3
87 rdf:type schema:PropertyValue
88 Na686634976614a298cafcd9f66a10471 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Neabc362b411b4f9bb56dba58b8a7e2df schema:name dimensions_id
91 schema:value pub.1044985974
92 rdf:type schema:PropertyValue
93 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
94 schema:name Chemical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Chemistry (incl. Structural)
98 rdf:type schema:DefinedTerm
99 sg:grant.2925661 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-015-9993-3
100 rdf:type schema:MonetaryGrant
101 sg:grant.2940302 http://pending.schema.org/fundedItem sg:pub.10.1007/s11468-015-9993-3
102 rdf:type schema:MonetaryGrant
103 sg:journal.1036713 schema:issn 1557-1955
104 1557-1963
105 schema:name Plasmonics
106 rdf:type schema:Periodical
107 sg:person.01061412700.49 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
108 schema:familyName Marinković
109 schema:givenName Tijana
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061412700.49
111 rdf:type schema:Person
112 sg:person.013552473221.05 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
113 schema:familyName Borka
114 schema:givenName Duško
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013552473221.05
116 rdf:type schema:Person
117 sg:person.014175602217.15 schema:affiliation https://www.grid.ac/institutes/grid.7149.b
118 schema:familyName Radović
119 schema:givenName Ivan
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014175602217.15
121 rdf:type schema:Person
122 sg:person.015510533203.05 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
123 schema:familyName Mišković
124 schema:givenName Zoran L.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510533203.05
126 rdf:type schema:Person
127 sg:pub.10.1038/nnano.2011.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007038178
128 https://doi.org/10.1038/nnano.2011.146
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nnano.2012.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021579466
131 https://doi.org/10.1038/nnano.2012.59
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nphoton.2010.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031313355
134 https://doi.org/10.1038/nphoton.2010.186
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nphoton.2013.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009176316
137 https://doi.org/10.1038/nphoton.2013.57
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0168-583x(92)95760-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1013873873
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0168-583x(92)95831-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1034845881
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.nimb.2011.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045856741
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.physleta.2011.08.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020112860
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.physleta.2014.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009600888
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.physleta.2014.11.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050663315
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/nl070613a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175219
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/nl201771h schema:sameAs https://app.dimensions.ai/details/publication/pub.1030038839
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/nl202362d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218802
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/nl500969t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220743
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/nn406627u schema:sameAs https://app.dimensions.ai/details/publication/pub.1026971401
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1039/c4nr03143a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016016695
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.1405826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057703413
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1063/1.3683534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036022244
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0953-8984/25/35/355009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046260259
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0957-4484/21/13/134017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021866260
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/1367-2630/16/6/063015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136459
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1088/1367-2630/8/12/318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038803669
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreva.72.012903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060501314
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.34.979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541852
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.46.2663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060563519
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.75.205418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020457785
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.78.201403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626685
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.80.195405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002242616
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.80.245435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631227
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.81.081406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631763
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.82.195406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007094170
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.82.201413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445603
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.86.125442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640046
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.86.165419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640261
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.88.205412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041646458
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.83.5378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820539
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.85.3137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821974
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.98.236601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010141498
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/revmodphys.83.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015873393
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1202691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045341924
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1364/oe.18.008353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039193750
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1364/oe.20.019690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065201202
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
218 schema:name Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
219 Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.7149.b schema:alternateName University of Belgrade
222 schema:name Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...