Features of Local Electric Field Excitation in Asymmetric Nanocross Illuminated by Ultrafast Laser Pulse View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05-19

AUTHORS

Boyu Ji, Jiang Qin, Zuoqiang Hao, Jingquan Lin

ABSTRACT

Features of the asymmetric nanocross including extinction spectrum, local electric field intensity, and temporal response of the local electric field under ultrashort laser illumination are investigated in this paper. It is found that, due to the simultaneous excitation of local electric fields in the arms that are perpendicular and parallel to the laser polarization direction of the asymmetric nanocross, extinction spectrum exhibits multiple resonant peaks and the position of the peaks can be tuned by changing the lengths of the arms. Simulation results disclose that there is a strong connection between optical response of the parallel and perpendicular arms. Moreover, temporal response of electric field in arms of the asymmetric nanocross shows that oscillations in the parallel arms start earlier than that of the perpendicular arms, and they are in phase when one of the parallel arms resonantly excited, which further reflects the relationship between the parallel and perpendicular arms. Therefore, we demonstrate that the perpendicular arm excitation is attributed to that of the nonresonant parallel arm in the asymmetric structure which cannot keep the overall electric neutrality of the nanostructure, and thus, perpendicular arms are activated to maintain this balance. More... »

PAGES

1573-1580

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11468-015-9974-6

DOI

http://dx.doi.org/10.1007/s11468-015-9974-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023086728


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Science, Changchun University of Science and Technology, 130022, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.440668.8", 
          "name": [
            "School of Science, Changchun University of Science and Technology, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Boyu", 
        "id": "sg:person.07645047515.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645047515.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Changchun University of Science and Technology, 130022, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.440668.8", 
          "name": [
            "School of Science, Changchun University of Science and Technology, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Jiang", 
        "id": "sg:person.013023021123.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023021123.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Changchun University of Science and Technology, 130022, Changchun, China", 
          "id": "http://www.grid.ac/institutes/grid.440668.8", 
          "name": [
            "School of Science, Changchun University of Science and Technology, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Zuoqiang", 
        "id": "sg:person.0620550720.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620550720.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Research Center for Nano Handling and Manufacturing of China, 130022, Changchun, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Science, Changchun University of Science and Technology, 130022, Changchun, China", 
            "International Research Center for Nano Handling and Manufacturing of China, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Jingquan", 
        "id": "sg:person.014441231351.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441231351.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature07012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038682239", 
          "https://doi.org/10.1038/nature07012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-012-1364-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000775354", 
          "https://doi.org/10.1007/s11051-012-1364-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004688176", 
          "https://doi.org/10.1038/nnano.2012.74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0407-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025556770", 
          "https://doi.org/10.1038/scientificamerican0407-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-011-9281-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004036927", 
          "https://doi.org/10.1007/s11468-011-9281-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010240965", 
          "https://doi.org/10.1038/nphoton.2009.187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051299040", 
          "https://doi.org/10.1038/ncomms3095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-37825-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028255731", 
          "https://doi.org/10.1007/0-387-37825-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025322991", 
          "https://doi.org/10.1038/nmat852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045886981", 
          "https://doi.org/10.1038/nmat2630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006739045", 
          "https://doi.org/10.1038/nbt927"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05-19", 
    "datePublishedReg": "2015-05-19", 
    "description": "Features of the asymmetric nanocross including extinction spectrum, local electric field intensity, and temporal response of the local electric field under ultrashort laser illumination are investigated in this paper. It is found that, due to the simultaneous excitation of local electric fields in the arms that are perpendicular and parallel to the laser polarization direction of the asymmetric nanocross, extinction spectrum exhibits multiple resonant peaks and the position of the peaks can be tuned by changing the lengths of the arms. Simulation results disclose that there is a strong connection between optical response of the parallel and perpendicular arms. Moreover, temporal response of electric field in arms of the asymmetric nanocross shows that oscillations in the parallel arms start earlier than that of the perpendicular arms, and they are in phase when one of the parallel arms resonantly excited, which further reflects the relationship between the parallel and perpendicular arms. Therefore, we demonstrate that the perpendicular arm excitation is attributed to that of the nonresonant parallel arm in the asymmetric structure which cannot keep the overall electric neutrality of the nanostructure, and thus, perpendicular arms are activated to maintain this balance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11468-015-9974-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036713", 
        "issn": [
          "1557-1955", 
          "1557-1963"
        ], 
        "name": "Plasmonics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "local electric field", 
      "electric field", 
      "extinction spectra", 
      "ultrafast laser pulses", 
      "perpendicular arms", 
      "laser polarization direction", 
      "local electric field intensity", 
      "electric field excitation", 
      "multiple resonant peaks", 
      "laser pulses", 
      "electric field intensity", 
      "optical response", 
      "laser illumination", 
      "simultaneous excitation", 
      "temporal response", 
      "polarization direction", 
      "resonant peaks", 
      "field excitation", 
      "nanocrosses", 
      "field intensity", 
      "excitation", 
      "electric neutrality", 
      "asymmetric structure", 
      "spectra", 
      "field", 
      "pulses", 
      "peak", 
      "nanostructures", 
      "illumination", 
      "oscillations", 
      "intensity", 
      "structure", 
      "phase", 
      "direction", 
      "features", 
      "simulation results", 
      "position", 
      "length", 
      "strong connection", 
      "neutrality", 
      "results", 
      "arm", 
      "connection", 
      "response", 
      "paper", 
      "balance", 
      "relationship", 
      "parallel arms"
    ], 
    "name": "Features of Local Electric Field Excitation in Asymmetric Nanocross Illuminated by Ultrafast Laser Pulse", 
    "pagination": "1573-1580", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023086728"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11468-015-9974-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11468-015-9974-6", 
      "https://app.dimensions.ai/details/publication/pub.1023086728"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_659.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11468-015-9974-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9974-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9974-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9974-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11468-015-9974-6'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      85 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11468-015-9974-6 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N38ef473638294b3398b29e2dc8cdfc0a
4 schema:citation sg:pub.10.1007/0-387-37825-1
5 sg:pub.10.1007/s11051-012-1364-9
6 sg:pub.10.1007/s11468-011-9281-9
7 sg:pub.10.1038/nature01937
8 sg:pub.10.1038/nature07012
9 sg:pub.10.1038/nbt927
10 sg:pub.10.1038/ncomms3095
11 sg:pub.10.1038/nmat2629
12 sg:pub.10.1038/nmat2630
13 sg:pub.10.1038/nmat852
14 sg:pub.10.1038/nnano.2012.74
15 sg:pub.10.1038/nphoton.2009.187
16 sg:pub.10.1038/scientificamerican0407-56
17 schema:datePublished 2015-05-19
18 schema:datePublishedReg 2015-05-19
19 schema:description Features of the asymmetric nanocross including extinction spectrum, local electric field intensity, and temporal response of the local electric field under ultrashort laser illumination are investigated in this paper. It is found that, due to the simultaneous excitation of local electric fields in the arms that are perpendicular and parallel to the laser polarization direction of the asymmetric nanocross, extinction spectrum exhibits multiple resonant peaks and the position of the peaks can be tuned by changing the lengths of the arms. Simulation results disclose that there is a strong connection between optical response of the parallel and perpendicular arms. Moreover, temporal response of electric field in arms of the asymmetric nanocross shows that oscillations in the parallel arms start earlier than that of the perpendicular arms, and they are in phase when one of the parallel arms resonantly excited, which further reflects the relationship between the parallel and perpendicular arms. Therefore, we demonstrate that the perpendicular arm excitation is attributed to that of the nonresonant parallel arm in the asymmetric structure which cannot keep the overall electric neutrality of the nanostructure, and thus, perpendicular arms are activated to maintain this balance.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N2a6baab26458435e8a24e4a214d9460c
23 N4d990ee8d7b44c62ab55072a1e43898d
24 sg:journal.1036713
25 schema:keywords arm
26 asymmetric structure
27 balance
28 connection
29 direction
30 electric field
31 electric field excitation
32 electric field intensity
33 electric neutrality
34 excitation
35 extinction spectra
36 features
37 field
38 field excitation
39 field intensity
40 illumination
41 intensity
42 laser illumination
43 laser polarization direction
44 laser pulses
45 length
46 local electric field
47 local electric field intensity
48 multiple resonant peaks
49 nanocrosses
50 nanostructures
51 neutrality
52 optical response
53 oscillations
54 paper
55 parallel arms
56 peak
57 perpendicular arms
58 phase
59 polarization direction
60 position
61 pulses
62 relationship
63 resonant peaks
64 response
65 results
66 simulation results
67 simultaneous excitation
68 spectra
69 strong connection
70 structure
71 temporal response
72 ultrafast laser pulses
73 schema:name Features of Local Electric Field Excitation in Asymmetric Nanocross Illuminated by Ultrafast Laser Pulse
74 schema:pagination 1573-1580
75 schema:productId N1bf4f3b8f9bd4092a864ea591a45dd1b
76 Nf7bfa942b2344af0b5baeb85f5badc5e
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023086728
78 https://doi.org/10.1007/s11468-015-9974-6
79 schema:sdDatePublished 2022-11-24T21:00
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N751c808d22384c71bd249d4478e96bda
82 schema:url https://doi.org/10.1007/s11468-015-9974-6
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N1bf4f3b8f9bd4092a864ea591a45dd1b schema:name dimensions_id
87 schema:value pub.1023086728
88 rdf:type schema:PropertyValue
89 N2a6baab26458435e8a24e4a214d9460c schema:issueNumber 6
90 rdf:type schema:PublicationIssue
91 N38ef473638294b3398b29e2dc8cdfc0a rdf:first sg:person.07645047515.05
92 rdf:rest Nc8de1189ab694b0f8ccf9a2084947b3d
93 N46116ba709be44e6b8821377d192a59a rdf:first sg:person.0620550720.20
94 rdf:rest Nea355eb2848642b1aba06819685aad18
95 N4d990ee8d7b44c62ab55072a1e43898d schema:volumeNumber 10
96 rdf:type schema:PublicationVolume
97 N751c808d22384c71bd249d4478e96bda schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nc8de1189ab694b0f8ccf9a2084947b3d rdf:first sg:person.013023021123.02
100 rdf:rest N46116ba709be44e6b8821377d192a59a
101 Nea355eb2848642b1aba06819685aad18 rdf:first sg:person.014441231351.87
102 rdf:rest rdf:nil
103 Nf7bfa942b2344af0b5baeb85f5badc5e schema:name doi
104 schema:value 10.1007/s11468-015-9974-6
105 rdf:type schema:PropertyValue
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
110 schema:name Optical Physics
111 rdf:type schema:DefinedTerm
112 sg:journal.1036713 schema:issn 1557-1955
113 1557-1963
114 schema:name Plasmonics
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.013023021123.02 schema:affiliation grid-institutes:grid.440668.8
118 schema:familyName Qin
119 schema:givenName Jiang
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023021123.02
121 rdf:type schema:Person
122 sg:person.014441231351.87 schema:affiliation grid-institutes:None
123 schema:familyName Lin
124 schema:givenName Jingquan
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441231351.87
126 rdf:type schema:Person
127 sg:person.0620550720.20 schema:affiliation grid-institutes:grid.440668.8
128 schema:familyName Hao
129 schema:givenName Zuoqiang
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620550720.20
131 rdf:type schema:Person
132 sg:person.07645047515.05 schema:affiliation grid-institutes:grid.440668.8
133 schema:familyName Ji
134 schema:givenName Boyu
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645047515.05
136 rdf:type schema:Person
137 sg:pub.10.1007/0-387-37825-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028255731
138 https://doi.org/10.1007/0-387-37825-1
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11051-012-1364-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000775354
141 https://doi.org/10.1007/s11051-012-1364-9
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11468-011-9281-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004036927
144 https://doi.org/10.1007/s11468-011-9281-9
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature01937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876312
147 https://doi.org/10.1038/nature01937
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature07012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038682239
150 https://doi.org/10.1038/nature07012
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nbt927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006739045
153 https://doi.org/10.1038/nbt927
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ncomms3095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051299040
156 https://doi.org/10.1038/ncomms3095
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmat2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990558
159 https://doi.org/10.1038/nmat2629
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmat2630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045886981
162 https://doi.org/10.1038/nmat2630
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nmat852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025322991
165 https://doi.org/10.1038/nmat852
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nnano.2012.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004688176
168 https://doi.org/10.1038/nnano.2012.74
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nphoton.2009.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010240965
171 https://doi.org/10.1038/nphoton.2009.187
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/scientificamerican0407-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025556770
174 https://doi.org/10.1038/scientificamerican0407-56
175 rdf:type schema:CreativeWork
176 grid-institutes:None schema:alternateName International Research Center for Nano Handling and Manufacturing of China, 130022, Changchun, China
177 schema:name International Research Center for Nano Handling and Manufacturing of China, 130022, Changchun, China
178 School of Science, Changchun University of Science and Technology, 130022, Changchun, China
179 rdf:type schema:Organization
180 grid-institutes:grid.440668.8 schema:alternateName School of Science, Changchun University of Science and Technology, 130022, Changchun, China
181 schema:name School of Science, Changchun University of Science and Technology, 130022, Changchun, China
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...