Thermoelectricity in B80-based single-molecule junctions: First-principles investigation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ying-Xiang Zhen, Ming Yang, Rui-Ning Wang

ABSTRACT

Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (σ), electron-derived thermal conductance (κel) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green’s function. When the distance between the left/right electrodes is 11.4 Å, the relationship between σ and κel obeys the Wiedemann–Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only −19.09 μV/K at 300 K, thus leading to the smaller electron’s thermoelectric figure of merit (ZelT = S2σT/κel). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches −0.6 Å or the chemical potential shifts to −0.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum. More... »

PAGES

23603

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11467-018-0865-0

DOI

http://dx.doi.org/10.1007/s11467-018-0865-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107722269


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, 071002, Baoding, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhen", 
        "givenName": "Ying-Xiang", 
        "id": "sg:person.07465510053.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07465510053.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Engineering Thermophysics", 
          "id": "https://www.grid.ac/institutes/grid.458465.e", 
          "name": [
            "Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Ming", 
        "id": "sg:person.011060451053.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011060451053.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University", 
          "id": "https://www.grid.ac/institutes/grid.256885.4", 
          "name": [
            "Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, 071002, Baoding, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Rui-Ning", 
        "id": "sg:person.01147136575.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147136575.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0301-0104(02)00446-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000392128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl400579g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001979881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.241403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004101141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.241403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004101141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.15.7436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005880290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(74)85031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006202945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-matsci-062910-100445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007843784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008497055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010731331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.125421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010731331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.193306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.193306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/23/27/275401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016398531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017104687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017104687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4967751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018648651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/7/073032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019852021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja202178k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021536098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja202178k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021536098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201004291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025710796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026086277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026086277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2014839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026705541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2014839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026705541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.066801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027497404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.066801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027497404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028717715", 
          "https://doi.org/10.1038/ncomms7678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp04635h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036411777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3653790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038324802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041139152", 
          "https://doi.org/10.1038/srep11519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.193101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046192146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.193101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046192146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.046802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047142271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.046802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047142271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.5b04106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055108895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp110920q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp110920q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl303871x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn101902r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2811936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057873329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3689817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058001525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/28/37/373001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059114292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.1993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.035416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.035416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.085414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.085414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.057202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.057202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.1494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.1494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4981890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085082453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.245404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085918232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.245404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085918232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (\u03c3), electron-derived thermal conductance (\u03bael) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green\u2019s function. When the distance between the left/right electrodes is 11.4 \u00c5, the relationship between \u03c3 and \u03bael obeys the Wiedemann\u2013Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only \u221219.09 \u03bcV/K at 300 K, thus leading to the smaller electron\u2019s thermoelectric figure of merit (ZelT = S2\u03c3T/\u03bael). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches \u22120.6 \u00c5 or the chemical potential shifts to \u22120.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11467-018-0865-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047919", 
        "issn": [
          "2095-0462", 
          "2095-0470"
        ], 
        "name": "Frontiers of Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Thermoelectricity in B80-based single-molecule junctions: First-principles investigation", 
    "pagination": "23603", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06a90e0c1d2c6624a6d2ff92017879cd9f0739ce34c79d74b15c3a6203cc09fb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11467-018-0865-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107722269"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11467-018-0865-0", 
      "https://app.dimensions.ai/details/publication/pub.1107722269"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11467-018-0865-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11467-018-0865-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11467-018-0865-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11467-018-0865-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11467-018-0865-0'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11467-018-0865-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N1e465bd3931f43b5a9266faeadf746b3
4 schema:citation sg:pub.10.1038/ncomms7678
5 sg:pub.10.1038/srep11519
6 https://doi.org/10.1002/adma.201004291
7 https://doi.org/10.1016/0009-2614(74)85031-1
8 https://doi.org/10.1016/s0301-0104(02)00446-9
9 https://doi.org/10.1021/acs.jpcc.5b04106
10 https://doi.org/10.1021/ja202178k
11 https://doi.org/10.1021/jp110920q
12 https://doi.org/10.1021/nl2014839
13 https://doi.org/10.1021/nl303871x
14 https://doi.org/10.1021/nl400579g
15 https://doi.org/10.1021/nn101902r
16 https://doi.org/10.1039/c4cp04635h
17 https://doi.org/10.1063/1.2811936
18 https://doi.org/10.1063/1.3653790
19 https://doi.org/10.1063/1.3689817
20 https://doi.org/10.1063/1.4967751
21 https://doi.org/10.1063/1.4981890
22 https://doi.org/10.1073/pnas.93.15.7436
23 https://doi.org/10.1088/0953-8984/28/37/373001
24 https://doi.org/10.1088/0957-4484/23/27/275401
25 https://doi.org/10.1088/1367-2630/14/7/073032
26 https://doi.org/10.1103/physrevb.13.5188
27 https://doi.org/10.1103/physrevb.33.551
28 https://doi.org/10.1103/physrevb.43.1993
29 https://doi.org/10.1103/physrevb.67.241403
30 https://doi.org/10.1103/physrevb.68.035416
31 https://doi.org/10.1103/physrevb.73.085414
32 https://doi.org/10.1103/physrevb.74.193306
33 https://doi.org/10.1103/physrevb.77.125411
34 https://doi.org/10.1103/physrevb.79.193101
35 https://doi.org/10.1103/physrevb.90.125421
36 https://doi.org/10.1103/physrevb.95.245404
37 https://doi.org/10.1103/physrevlett.100.066801
38 https://doi.org/10.1103/physrevlett.102.046802
39 https://doi.org/10.1103/physrevlett.105.057202
40 https://doi.org/10.1103/physrevlett.43.1494
41 https://doi.org/10.1103/physrevlett.77.3865
42 https://doi.org/10.1103/revmodphys.83.131
43 https://doi.org/10.1126/science.1137149
44 https://doi.org/10.1126/science.1145220
45 https://doi.org/10.1146/annurev-matsci-062910-100445
46 schema:datePublished 2019-04
47 schema:datePublishedReg 2019-04-01
48 schema:description Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (σ), electron-derived thermal conductance (κel) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green’s function. When the distance between the left/right electrodes is 11.4 Å, the relationship between σ and κel obeys the Wiedemann–Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only −19.09 μV/K at 300 K, thus leading to the smaller electron’s thermoelectric figure of merit (ZelT = S2σT/κel). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches −0.6 Å or the chemical potential shifts to −0.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N94d409d6cafa420dbf5715e70bc6a9b3
53 N959cc84e1b134c048b943acd8984d3a5
54 sg:journal.1047919
55 schema:name Thermoelectricity in B80-based single-molecule junctions: First-principles investigation
56 schema:pagination 23603
57 schema:productId N61d2a8a1b6f3468bbe7fdbba7deb43d7
58 N8749f0d9bd6d4eb58a367202c42f88bb
59 Na5c7f1c134ce421f82ae21e3af2b984b
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107722269
61 https://doi.org/10.1007/s11467-018-0865-0
62 schema:sdDatePublished 2019-04-10T14:19
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Neea9c68ccd284cbbbe35f260cdf92554
65 schema:url https://link.springer.com/10.1007%2Fs11467-018-0865-0
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N1e465bd3931f43b5a9266faeadf746b3 rdf:first sg:person.07465510053.92
70 rdf:rest N9b4a49d4026947fe955c12a358fed84a
71 N61d2a8a1b6f3468bbe7fdbba7deb43d7 schema:name dimensions_id
72 schema:value pub.1107722269
73 rdf:type schema:PropertyValue
74 N8749f0d9bd6d4eb58a367202c42f88bb schema:name readcube_id
75 schema:value 06a90e0c1d2c6624a6d2ff92017879cd9f0739ce34c79d74b15c3a6203cc09fb
76 rdf:type schema:PropertyValue
77 N94d409d6cafa420dbf5715e70bc6a9b3 schema:issueNumber 2
78 rdf:type schema:PublicationIssue
79 N959cc84e1b134c048b943acd8984d3a5 schema:volumeNumber 14
80 rdf:type schema:PublicationVolume
81 N9b4a49d4026947fe955c12a358fed84a rdf:first sg:person.011060451053.55
82 rdf:rest Nd0781b9fa9f44324af9efffb68f96d53
83 Na5c7f1c134ce421f82ae21e3af2b984b schema:name doi
84 schema:value 10.1007/s11467-018-0865-0
85 rdf:type schema:PropertyValue
86 Nd0781b9fa9f44324af9efffb68f96d53 rdf:first sg:person.01147136575.25
87 rdf:rest rdf:nil
88 Neea9c68ccd284cbbbe35f260cdf92554 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
91 schema:name Chemical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Chemistry (incl. Structural)
95 rdf:type schema:DefinedTerm
96 sg:journal.1047919 schema:issn 2095-0462
97 2095-0470
98 schema:name Frontiers of Physics
99 rdf:type schema:Periodical
100 sg:person.011060451053.55 schema:affiliation https://www.grid.ac/institutes/grid.458465.e
101 schema:familyName Yang
102 schema:givenName Ming
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011060451053.55
104 rdf:type schema:Person
105 sg:person.01147136575.25 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
106 schema:familyName Wang
107 schema:givenName Rui-Ning
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147136575.25
109 rdf:type schema:Person
110 sg:person.07465510053.92 schema:affiliation https://www.grid.ac/institutes/grid.256885.4
111 schema:familyName Zhen
112 schema:givenName Ying-Xiang
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07465510053.92
114 rdf:type schema:Person
115 sg:pub.10.1038/ncomms7678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028717715
116 https://doi.org/10.1038/ncomms7678
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/srep11519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041139152
119 https://doi.org/10.1038/srep11519
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/adma.201004291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690836
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0009-2614(74)85031-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006202945
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0301-0104(02)00446-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000392128
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/acs.jpcc.5b04106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055108895
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/ja202178k schema:sameAs https://app.dimensions.ai/details/publication/pub.1021536098
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/jp110920q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056080688
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/nl2014839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026705541
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/nl303871x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219775
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/nl400579g schema:sameAs https://app.dimensions.ai/details/publication/pub.1001979881
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/nn101902r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222855
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1039/c4cp04635h schema:sameAs https://app.dimensions.ai/details/publication/pub.1036411777
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.2811936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057873329
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.3653790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038324802
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.3689817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058001525
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.4967751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018648651
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.4981890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085082453
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.93.15.7436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005880290
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0953-8984/28/37/373001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059114292
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/0957-4484/23/27/275401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016398531
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/1367-2630/14/7/073032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019852021
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.33.551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539902
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.43.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557212
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.67.241403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004101141
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.68.035416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607014
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.73.085414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616705
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.74.193306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014383280
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.77.125411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026086277
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.79.193101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046192146
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.90.125421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010731331
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.95.245404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085918232
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.100.066801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027497404
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.102.046802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047142271
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.105.057202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757290
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.43.1494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784188
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/revmodphys.83.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017104687
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.1137149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008497055
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1145220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025710796
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1146/annurev-matsci-062910-100445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007843784
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.256885.4 schema:alternateName Hebei University
202 schema:name Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, 071002, Baoding, China
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.458465.e schema:alternateName Institute of Engineering Thermophysics
205 schema:name Institute of Engineering Thermophysics, Chinese Academy of Sciences, 100190, Beijing, China
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...