Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06-09

AUTHORS

Yupeng Li, Zhen Wang, Pengshan Li, Xiaojun Yang, Zhixuan Shen, Feng Sheng, Xiaodong Li, Yunhao Lu, Yi Zheng, Zhu-An Xu

ABSTRACT

Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions. More... »

PAGES

127205

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11467-016-0636-8

DOI

http://dx.doi.org/10.1007/s11467-016-0636-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044016529


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Physics, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yupeng", 
        "id": "sg:person.016516010761.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516010761.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Physics, Zhejiang University, 310027, Hangzhou, China", 
            "State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhen", 
        "id": "sg:person.013456244747.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013456244747.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.418741.f", 
          "name": [
            "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Pengshan", 
        "id": "sg:person.01264453064.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264453064.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Physics, Zhejiang University, 310027, Hangzhou, China", 
            "State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xiaojun", 
        "id": "sg:person.0661134634.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661134634.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Physics, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Zhixuan", 
        "id": "sg:person.015741647046.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741647046.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Physics, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheng", 
        "givenName": "Feng", 
        "id": "sg:person.016453261263.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453261263.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.418741.f", 
          "name": [
            "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiaodong", 
        "id": "sg:person.010176504435.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010176504435.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yunhao", 
        "id": "sg:person.013602642611.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013602642611.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Centre of Advanced Microstructures, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Physics, Zhejiang University, 310027, Hangzhou, China", 
            "Zhejiang California International NanoSystems Institute, Zhejiang University, 310058, Hangzhou, China", 
            "Collaborative Innovation Centre of Advanced Microstructures, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yi", 
        "id": "sg:person.01153517545.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153517545.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Centre of Advanced Microstructures, 210093, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Physics, Zhejiang University, 310027, Hangzhou, China", 
            "State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China", 
            "Zhejiang California International NanoSystems Institute, Zhejiang University, 310058, Hangzhou, China", 
            "Collaborative Innovation Centre of Advanced Microstructures, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Zhu-An", 
        "id": "sg:person.010353131562.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353131562.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat4143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050812169", 
          "https://doi.org/10.1038/nmat4143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808151", 
          "https://doi.org/10.1038/ncomms8373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028212331", 
          "https://doi.org/10.1038/ncomms10735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002042648", 
          "https://doi.org/10.1038/nphys3437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01339504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053715238", 
          "https://doi.org/10.1007/bf01339504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014314134", 
          "https://doi.org/10.1038/nphys3372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016952109", 
          "https://doi.org/10.1038/nmat4684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030322940", 
          "https://doi.org/10.1038/srep05817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-09", 
    "datePublishedReg": "2017-06-09", 
    "description": "Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11467-016-0636-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8302754", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8124945", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8379458", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7184094", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8116868", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047919", 
        "issn": [
          "2095-0462", 
          "2095-0470"
        ], 
        "name": "Frontiers of Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "unique physical properties", 
      "NMR methods", 
      "chemical doping", 
      "NMR phenomenon", 
      "complimentary techniques", 
      "physical properties", 
      "elevated temperatures", 
      "impurities", 
      "extrinsic effects", 
      "conservation of helicity", 
      "helicity", 
      "doping", 
      "spin-orbital scattering", 
      "NBA", 
      "properties", 
      "bulk", 
      "carriers", 
      "NBP", 
      "pocket", 
      "scattering", 
      "sample quality", 
      "temperature", 
      "negative magnetoresistance", 
      "inhomogeneous current flow", 
      "general observations", 
      "transport evidence", 
      "current flow", 
      "magnetic impurities", 
      "Weyl semimetal NbAs", 
      "transport", 
      "Weyl fermions", 
      "jetting", 
      "weak localization", 
      "effect", 
      "orientation", 
      "non-magnetic impurities", 
      "chiral anomaly", 
      "crossover", 
      "spin orientation", 
      "technique", 
      "method", 
      "topological semimetals", 
      "phase coherence time", 
      "spin degeneracy", 
      "existence", 
      "magnetoresistance", 
      "semimetals", 
      "coherence time", 
      "phenomenon", 
      "fermions", 
      "time", 
      "Hall signal", 
      "support", 
      "growth", 
      "observations", 
      "superimposition", 
      "protection", 
      "signals", 
      "degeneracy", 
      "correlation", 
      "competition", 
      "strong protection", 
      "momentum", 
      "flow", 
      "evidence", 
      "localization", 
      "quality", 
      "anomalies", 
      "lifting", 
      "conservation"
    ], 
    "name": "Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects", 
    "pagination": "127205", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044016529"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11467-016-0636-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11467-016-0636-8", 
      "https://app.dimensions.ai/details/publication/pub.1044016529"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11467-016-0636-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11467-016-0636-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11467-016-0636-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11467-016-0636-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11467-016-0636-8'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      104 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11467-016-0636-8 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N2d314a1952124590a88dfd5c6975c9d3
4 schema:citation sg:pub.10.1007/bf01339504
5 sg:pub.10.1038/nature04233
6 sg:pub.10.1038/nature04235
7 sg:pub.10.1038/ncomms10735
8 sg:pub.10.1038/ncomms8373
9 sg:pub.10.1038/nmat4143
10 sg:pub.10.1038/nmat4684
11 sg:pub.10.1038/nphys3372
12 sg:pub.10.1038/nphys3437
13 sg:pub.10.1038/srep05817
14 schema:datePublished 2017-06-09
15 schema:datePublishedReg 2017-06-09
16 schema:description Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N392a99f8ba974f0198a94e1bc1d39c5c
20 Nb2389b2387404b7e8d72034d5a1b9aa5
21 sg:journal.1047919
22 schema:keywords Hall signal
23 NBA
24 NBP
25 NMR methods
26 NMR phenomenon
27 Weyl fermions
28 Weyl semimetal NbAs
29 anomalies
30 bulk
31 carriers
32 chemical doping
33 chiral anomaly
34 coherence time
35 competition
36 complimentary techniques
37 conservation
38 conservation of helicity
39 correlation
40 crossover
41 current flow
42 degeneracy
43 doping
44 effect
45 elevated temperatures
46 evidence
47 existence
48 extrinsic effects
49 fermions
50 flow
51 general observations
52 growth
53 helicity
54 impurities
55 inhomogeneous current flow
56 jetting
57 lifting
58 localization
59 magnetic impurities
60 magnetoresistance
61 method
62 momentum
63 negative magnetoresistance
64 non-magnetic impurities
65 observations
66 orientation
67 phase coherence time
68 phenomenon
69 physical properties
70 pocket
71 properties
72 protection
73 quality
74 sample quality
75 scattering
76 semimetals
77 signals
78 spin degeneracy
79 spin orientation
80 spin-orbital scattering
81 strong protection
82 superimposition
83 support
84 technique
85 temperature
86 time
87 topological semimetals
88 transport
89 transport evidence
90 unique physical properties
91 weak localization
92 schema:name Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects
93 schema:pagination 127205
94 schema:productId N1680610c5b2b46e5ba5b0ea9271ec6ef
95 N87079994490a4fafbed36932f26b1c1d
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044016529
97 https://doi.org/10.1007/s11467-016-0636-8
98 schema:sdDatePublished 2022-12-01T06:36
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N4c5bef315fad41bfbaa74a7be8b29d4c
101 schema:url https://doi.org/10.1007/s11467-016-0636-8
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N017a48d2e3244110b0ade931ee75ac9a rdf:first sg:person.013456244747.24
106 rdf:rest N6c686c8972cd479bbbc43000bb0d4588
107 N1680610c5b2b46e5ba5b0ea9271ec6ef schema:name doi
108 schema:value 10.1007/s11467-016-0636-8
109 rdf:type schema:PropertyValue
110 N1a26adc579bd4d329ffb6f9afe26709e rdf:first sg:person.013602642611.82
111 rdf:rest N53eb232f3d014059a37b436f199adfae
112 N24f32729c04a45fcb492e006581526cd rdf:first sg:person.015741647046.14
113 rdf:rest Ncd7b8a659dc64664b8a5e62090f4c689
114 N2d314a1952124590a88dfd5c6975c9d3 rdf:first sg:person.016516010761.57
115 rdf:rest N017a48d2e3244110b0ade931ee75ac9a
116 N392a99f8ba974f0198a94e1bc1d39c5c schema:issueNumber 3
117 rdf:type schema:PublicationIssue
118 N4c5bef315fad41bfbaa74a7be8b29d4c schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N53eb232f3d014059a37b436f199adfae rdf:first sg:person.01153517545.09
121 rdf:rest N83f3b9567bc54aa79ff3071bdddab603
122 N6c686c8972cd479bbbc43000bb0d4588 rdf:first sg:person.01264453064.42
123 rdf:rest Nde91f8df13a6430785fb6cfa0b788dc3
124 N83f3b9567bc54aa79ff3071bdddab603 rdf:first sg:person.010353131562.42
125 rdf:rest rdf:nil
126 N87079994490a4fafbed36932f26b1c1d schema:name dimensions_id
127 schema:value pub.1044016529
128 rdf:type schema:PropertyValue
129 Naab64f42d49f420c83af0f081ee7b44e rdf:first sg:person.010176504435.16
130 rdf:rest N1a26adc579bd4d329ffb6f9afe26709e
131 Nb2389b2387404b7e8d72034d5a1b9aa5 schema:volumeNumber 12
132 rdf:type schema:PublicationVolume
133 Ncd7b8a659dc64664b8a5e62090f4c689 rdf:first sg:person.016453261263.66
134 rdf:rest Naab64f42d49f420c83af0f081ee7b44e
135 Nde91f8df13a6430785fb6cfa0b788dc3 rdf:first sg:person.0661134634.49
136 rdf:rest N24f32729c04a45fcb492e006581526cd
137 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
138 schema:name Physical Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
141 schema:name Other Physical Sciences
142 rdf:type schema:DefinedTerm
143 sg:grant.7184094 http://pending.schema.org/fundedItem sg:pub.10.1007/s11467-016-0636-8
144 rdf:type schema:MonetaryGrant
145 sg:grant.8116868 http://pending.schema.org/fundedItem sg:pub.10.1007/s11467-016-0636-8
146 rdf:type schema:MonetaryGrant
147 sg:grant.8124945 http://pending.schema.org/fundedItem sg:pub.10.1007/s11467-016-0636-8
148 rdf:type schema:MonetaryGrant
149 sg:grant.8302754 http://pending.schema.org/fundedItem sg:pub.10.1007/s11467-016-0636-8
150 rdf:type schema:MonetaryGrant
151 sg:grant.8379458 http://pending.schema.org/fundedItem sg:pub.10.1007/s11467-016-0636-8
152 rdf:type schema:MonetaryGrant
153 sg:journal.1047919 schema:issn 2095-0462
154 2095-0470
155 schema:name Frontiers of Physics
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.010176504435.16 schema:affiliation grid-institutes:grid.418741.f
159 schema:familyName Li
160 schema:givenName Xiaodong
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010176504435.16
162 rdf:type schema:Person
163 sg:person.010353131562.42 schema:affiliation grid-institutes:None
164 schema:familyName Xu
165 schema:givenName Zhu-An
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353131562.42
167 rdf:type schema:Person
168 sg:person.01153517545.09 schema:affiliation grid-institutes:None
169 schema:familyName Zheng
170 schema:givenName Yi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153517545.09
172 rdf:type schema:Person
173 sg:person.01264453064.42 schema:affiliation grid-institutes:grid.418741.f
174 schema:familyName Li
175 schema:givenName Pengshan
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264453064.42
177 rdf:type schema:Person
178 sg:person.013456244747.24 schema:affiliation grid-institutes:grid.13402.34
179 schema:familyName Wang
180 schema:givenName Zhen
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013456244747.24
182 rdf:type schema:Person
183 sg:person.013602642611.82 schema:affiliation grid-institutes:grid.13402.34
184 schema:familyName Lu
185 schema:givenName Yunhao
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013602642611.82
187 rdf:type schema:Person
188 sg:person.015741647046.14 schema:affiliation grid-institutes:grid.13402.34
189 schema:familyName Shen
190 schema:givenName Zhixuan
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741647046.14
192 rdf:type schema:Person
193 sg:person.016453261263.66 schema:affiliation grid-institutes:grid.13402.34
194 schema:familyName Sheng
195 schema:givenName Feng
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016453261263.66
197 rdf:type schema:Person
198 sg:person.016516010761.57 schema:affiliation grid-institutes:grid.13402.34
199 schema:familyName Li
200 schema:givenName Yupeng
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516010761.57
202 rdf:type schema:Person
203 sg:person.0661134634.49 schema:affiliation grid-institutes:grid.13402.34
204 schema:familyName Yang
205 schema:givenName Xiaojun
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661134634.49
207 rdf:type schema:Person
208 sg:pub.10.1007/bf01339504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053715238
209 https://doi.org/10.1007/bf01339504
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
212 https://doi.org/10.1038/nature04233
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
215 https://doi.org/10.1038/nature04235
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/ncomms10735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028212331
218 https://doi.org/10.1038/ncomms10735
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
221 https://doi.org/10.1038/ncomms8373
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nmat4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812169
224 https://doi.org/10.1038/nmat4143
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nmat4684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016952109
227 https://doi.org/10.1038/nmat4684
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nphys3372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314134
230 https://doi.org/10.1038/nphys3372
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nphys3437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002042648
233 https://doi.org/10.1038/nphys3437
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/srep05817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030322940
236 https://doi.org/10.1038/srep05817
237 rdf:type schema:CreativeWork
238 grid-institutes:None schema:alternateName Collaborative Innovation Centre of Advanced Microstructures, 210093, Nanjing, China
239 schema:name Collaborative Innovation Centre of Advanced Microstructures, 210093, Nanjing, China
240 Department of Physics, Zhejiang University, 310027, Hangzhou, China
241 State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China
242 Zhejiang California International NanoSystems Institute, Zhejiang University, 310058, Hangzhou, China
243 rdf:type schema:Organization
244 grid-institutes:grid.13402.34 schema:alternateName Department of Physics, Zhejiang University, 310027, Hangzhou, China
245 State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China
246 schema:name Department of Physics, Zhejiang University, 310027, Hangzhou, China
247 State Key Lab of Silicon Materials, Zhejiang University, 310027, Hangzhou, China
248 rdf:type schema:Organization
249 grid-institutes:grid.418741.f schema:alternateName Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
250 schema:name Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...