Single photon sources with single semiconductor quantum dots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09-11

AUTHORS

Guang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, Wei Huang

ABSTRACT

In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed. More... »

PAGES

170-193

References to SciGraph publications

  • 2007-01-28. Quantum nature of a strongly coupled single quantum dot–cavity system in NATURE
  • 2012-05-02. Vertical-external-cavity surface-emitting lasers and quantum dot lasers in FRONTIERS OF OPTOELECTRONICS
  • 2000-08. Quantum correlation among photons from a single quantum dot at room temperature in NATURE
  • 1997-01. Single-molecule spectral fluctuations at room temperature in NATURE
  • 2007-03. Quantum communication in NATURE PHOTONICS
  • 2005-02-13. Ultra-high-Q photonic double-heterostructure nanocavity in NATURE MATERIALS
  • 2007-11-18. High-frequency single-photon source with polarization control in NATURE PHOTONICS
  • 1999-02. A single-photon turnstile device in NATURE
  • 2004-10-28. Continuous generation of single photons with controlled waveform in an ion-trap cavity system in NATURE
  • 2000-09. Single photons on demand from a single molecule at room temperature in NATURE
  • 2008-06-22. Towards non-blinking colloidal quantum dots in NATURE MATERIALS
  • 1996-10. Fluorescence intermittency in single cadmium selenide nanocrystals in NATURE
  • 2011-04-24. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser in NATURE PHOTONICS
  • 2001-01. A scheme for efficient quantum computation with linear optics in NATURE
  • 2007-04. Semiconductor quantum light sources in NATURE PHOTONICS
  • 2013-02-03. On-demand semiconductor single-photon source with near-unity indistinguishability in NATURE NANOTECHNOLOGY
  • 2004-11. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity in NATURE
  • 2009-05-10. Non-blinking semiconductor nanocrystals in NATURE
  • 2003-05-25. Controlled growth of tetrapod-branched inorganic nanocrystals in NATURE MATERIALS
  • 2006-10-22. A gallium nitride single-photon source operating at 200 K in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11467-013-0360-6

    DOI

    http://dx.doi.org/10.1007/s11467-013-0360-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045049909


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Fu Foundation School of Engineering and Applied Science, Columbia University, 10027, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.21729.3f", 
              "name": [
                "Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China", 
                "The Fu Foundation School of Engineering and Applied Science, Columbia University, 10027, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shan", 
            "givenName": "Guang-Cun", 
            "id": "sg:person.0660762314.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660762314.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, 100084, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "The Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, 100084, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Zhang-Qi", 
            "id": "sg:person.01243606750.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243606750.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China", 
              "id": "http://www.grid.ac/institutes/grid.35030.35", 
              "name": [
                "Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shek", 
            "givenName": "Chan Hung", 
            "id": "sg:person.016042135545.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042135545.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Singapore-Jiangsu Joint Research Center for Organic/Bio-electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, 211816, Nanjing, China", 
              "id": "http://www.grid.ac/institutes/grid.412022.7", 
              "name": [
                "Singapore-Jiangsu Joint Research Center for Organic/Bio-electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, 211816, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Wei", 
            "id": "sg:person.010734436325.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010734436325.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/17295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039575561", 
              "https://doi.org/10.1038/17295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012365869", 
              "https://doi.org/10.1038/nnano.2012.262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/383802a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009052486", 
              "https://doi.org/10.1038/383802a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004075839", 
              "https://doi.org/10.1038/nature08072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2007.227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001168444", 
              "https://doi.org/10.1038/nphoton.2007.227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031101061", 
              "https://doi.org/10.1038/nature03119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049703325", 
              "https://doi.org/10.1038/nmat1320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010265317", 
              "https://doi.org/10.1038/nphoton.2011.51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002297018", 
              "https://doi.org/10.1038/nmat1763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2007.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051654351", 
              "https://doi.org/10.1038/nphoton.2007.22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12200-012-0237-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021355573", 
              "https://doi.org/10.1007/s12200-012-0237-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35051009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008492203", 
              "https://doi.org/10.1038/35051009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021237654", 
              "https://doi.org/10.1038/nature02961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018558789", 
              "https://doi.org/10.1038/nature05586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385143a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020769040", 
              "https://doi.org/10.1038/385143a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2007.46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026684943", 
              "https://doi.org/10.1038/nphoton.2007.46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053733475", 
              "https://doi.org/10.1038/nmat2222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35035032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008282179", 
              "https://doi.org/10.1038/35035032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025534879", 
              "https://doi.org/10.1038/nmat902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046568631", 
              "https://doi.org/10.1038/35023100"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-09-11", 
        "datePublishedReg": "2013-09-11", 
        "description": "In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11467-013-0360-6", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1047919", 
            "issn": [
              "2095-0462", 
              "2095-0470"
            ], 
            "name": "Frontiers of Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "single-photon sources", 
          "semiconductor quantum dots", 
          "strong coupling regime", 
          "single semiconductor quantum dot", 
          "single quantum dot", 
          "photon sources", 
          "coupling regime", 
          "optical properties", 
          "quantum dots", 
          "room-temperature single-photon emission", 
          "practical single-photon sources", 
          "QD single-photon sources", 
          "optical microcavity systems", 
          "emitter-cavity system", 
          "single-photon generation", 
          "photonic crystal nanocavities", 
          "high repetition rate", 
          "overall optical properties", 
          "quantum optics", 
          "crystal nanocavities", 
          "indistinguishable photons", 
          "microcavity system", 
          "photon statistics", 
          "polarization control", 
          "repetition rate", 
          "wavelength range", 
          "temperature operation", 
          "dots", 
          "photon emission", 
          "high collection", 
          "recent progress", 
          "regime", 
          "microcavities", 
          "quantum", 
          "photons", 
          "optics", 
          "nanocavities", 
          "elevated temperature operation", 
          "physics", 
          "properties", 
          "new generation", 
          "single photon emission", 
          "emission", 
          "source", 
          "generation", 
          "fabrication", 
          "fluorescence", 
          "basic concepts", 
          "new developments", 
          "theory", 
          "directionality", 
          "range", 
          "statistics", 
          "system", 
          "contribution", 
          "efficiency", 
          "progress", 
          "terms", 
          "operation", 
          "approach", 
          "localization", 
          "performance", 
          "concept", 
          "control", 
          "understanding", 
          "rate", 
          "development", 
          "challenges", 
          "collection"
        ], 
        "name": "Single photon sources with single semiconductor quantum dots", 
        "pagination": "170-193", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045049909"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11467-013-0360-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11467-013-0360-6", 
          "https://app.dimensions.ai/details/publication/pub.1045049909"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_610.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11467-013-0360-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11467-013-0360-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11467-013-0360-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11467-013-0360-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11467-013-0360-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    241 TRIPLES      21 PREDICATES      114 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11467-013-0360-6 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:0206
    4 schema:author N268297238d8247cc8b3cf7fc8426d2fb
    5 schema:citation sg:pub.10.1007/s12200-012-0237-2
    6 sg:pub.10.1038/17295
    7 sg:pub.10.1038/35023100
    8 sg:pub.10.1038/35035032
    9 sg:pub.10.1038/35051009
    10 sg:pub.10.1038/383802a0
    11 sg:pub.10.1038/385143a0
    12 sg:pub.10.1038/nature02961
    13 sg:pub.10.1038/nature03119
    14 sg:pub.10.1038/nature05586
    15 sg:pub.10.1038/nature08072
    16 sg:pub.10.1038/nmat1320
    17 sg:pub.10.1038/nmat1763
    18 sg:pub.10.1038/nmat2222
    19 sg:pub.10.1038/nmat902
    20 sg:pub.10.1038/nnano.2012.262
    21 sg:pub.10.1038/nphoton.2007.22
    22 sg:pub.10.1038/nphoton.2007.227
    23 sg:pub.10.1038/nphoton.2007.46
    24 sg:pub.10.1038/nphoton.2011.51
    25 schema:datePublished 2013-09-11
    26 schema:datePublishedReg 2013-09-11
    27 schema:description In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.
    28 schema:genre article
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N79d7cd397fe640568c51f745589758f0
    31 Ndac40c99acd04eff99eed59ab781cd57
    32 sg:journal.1047919
    33 schema:keywords QD single-photon sources
    34 approach
    35 basic concepts
    36 challenges
    37 collection
    38 concept
    39 contribution
    40 control
    41 coupling regime
    42 crystal nanocavities
    43 development
    44 directionality
    45 dots
    46 efficiency
    47 elevated temperature operation
    48 emission
    49 emitter-cavity system
    50 fabrication
    51 fluorescence
    52 generation
    53 high collection
    54 high repetition rate
    55 indistinguishable photons
    56 localization
    57 microcavities
    58 microcavity system
    59 nanocavities
    60 new developments
    61 new generation
    62 operation
    63 optical microcavity systems
    64 optical properties
    65 optics
    66 overall optical properties
    67 performance
    68 photon emission
    69 photon sources
    70 photon statistics
    71 photonic crystal nanocavities
    72 photons
    73 physics
    74 polarization control
    75 practical single-photon sources
    76 progress
    77 properties
    78 quantum
    79 quantum dots
    80 quantum optics
    81 range
    82 rate
    83 recent progress
    84 regime
    85 repetition rate
    86 room-temperature single-photon emission
    87 semiconductor quantum dots
    88 single photon emission
    89 single quantum dot
    90 single semiconductor quantum dot
    91 single-photon generation
    92 single-photon sources
    93 source
    94 statistics
    95 strong coupling regime
    96 system
    97 temperature operation
    98 terms
    99 theory
    100 understanding
    101 wavelength range
    102 schema:name Single photon sources with single semiconductor quantum dots
    103 schema:pagination 170-193
    104 schema:productId Nf8d28798a7fb4ae88b91660f16bbac43
    105 Nfc3a7efd3146460590a0caa5a9ce74de
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045049909
    107 https://doi.org/10.1007/s11467-013-0360-6
    108 schema:sdDatePublished 2022-08-04T17:01
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N08db11d027a84a43a90578c2a67edd22
    111 schema:url https://doi.org/10.1007/s11467-013-0360-6
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N08db11d027a84a43a90578c2a67edd22 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 N141d693d050e4042a0439fe861ab6ad7 rdf:first sg:person.016042135545.36
    118 rdf:rest N4767972b4fb94a258898446bb64052ef
    119 N268297238d8247cc8b3cf7fc8426d2fb rdf:first sg:person.0660762314.51
    120 rdf:rest N86775788d6454b03aecf3e1f8187747d
    121 N4767972b4fb94a258898446bb64052ef rdf:first sg:person.010734436325.46
    122 rdf:rest rdf:nil
    123 N79d7cd397fe640568c51f745589758f0 schema:issueNumber 2
    124 rdf:type schema:PublicationIssue
    125 N86775788d6454b03aecf3e1f8187747d rdf:first sg:person.01243606750.99
    126 rdf:rest N141d693d050e4042a0439fe861ab6ad7
    127 Ndac40c99acd04eff99eed59ab781cd57 schema:volumeNumber 9
    128 rdf:type schema:PublicationVolume
    129 Nf8d28798a7fb4ae88b91660f16bbac43 schema:name dimensions_id
    130 schema:value pub.1045049909
    131 rdf:type schema:PropertyValue
    132 Nfc3a7efd3146460590a0caa5a9ce74de schema:name doi
    133 schema:value 10.1007/s11467-013-0360-6
    134 rdf:type schema:PropertyValue
    135 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Physical Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Optical Physics
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Quantum Physics
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1047919 schema:issn 2095-0462
    145 2095-0470
    146 schema:name Frontiers of Physics
    147 schema:publisher Springer Nature
    148 rdf:type schema:Periodical
    149 sg:person.010734436325.46 schema:affiliation grid-institutes:grid.412022.7
    150 schema:familyName Huang
    151 schema:givenName Wei
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010734436325.46
    153 rdf:type schema:Person
    154 sg:person.01243606750.99 schema:affiliation grid-institutes:grid.12527.33
    155 schema:familyName Yin
    156 schema:givenName Zhang-Qi
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243606750.99
    158 rdf:type schema:Person
    159 sg:person.016042135545.36 schema:affiliation grid-institutes:grid.35030.35
    160 schema:familyName Shek
    161 schema:givenName Chan Hung
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042135545.36
    163 rdf:type schema:Person
    164 sg:person.0660762314.51 schema:affiliation grid-institutes:grid.21729.3f
    165 schema:familyName Shan
    166 schema:givenName Guang-Cun
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660762314.51
    168 rdf:type schema:Person
    169 sg:pub.10.1007/s12200-012-0237-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021355573
    170 https://doi.org/10.1007/s12200-012-0237-2
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/17295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039575561
    173 https://doi.org/10.1038/17295
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/35023100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046568631
    176 https://doi.org/10.1038/35023100
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/35035032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008282179
    179 https://doi.org/10.1038/35035032
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/35051009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008492203
    182 https://doi.org/10.1038/35051009
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/383802a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009052486
    185 https://doi.org/10.1038/383802a0
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/385143a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020769040
    188 https://doi.org/10.1038/385143a0
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature02961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021237654
    191 https://doi.org/10.1038/nature02961
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature03119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031101061
    194 https://doi.org/10.1038/nature03119
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature05586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018558789
    197 https://doi.org/10.1038/nature05586
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature08072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004075839
    200 https://doi.org/10.1038/nature08072
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nmat1320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049703325
    203 https://doi.org/10.1038/nmat1320
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nmat1763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002297018
    206 https://doi.org/10.1038/nmat1763
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nmat2222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053733475
    209 https://doi.org/10.1038/nmat2222
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nmat902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534879
    212 https://doi.org/10.1038/nmat902
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nnano.2012.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012365869
    215 https://doi.org/10.1038/nnano.2012.262
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nphoton.2007.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051654351
    218 https://doi.org/10.1038/nphoton.2007.22
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nphoton.2007.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001168444
    221 https://doi.org/10.1038/nphoton.2007.227
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nphoton.2007.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026684943
    224 https://doi.org/10.1038/nphoton.2007.46
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nphoton.2011.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010265317
    227 https://doi.org/10.1038/nphoton.2011.51
    228 rdf:type schema:CreativeWork
    229 grid-institutes:grid.12527.33 schema:alternateName The Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, 100084, Beijing, China
    230 schema:name The Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, 100084, Beijing, China
    231 rdf:type schema:Organization
    232 grid-institutes:grid.21729.3f schema:alternateName The Fu Foundation School of Engineering and Applied Science, Columbia University, 10027, New York, NY, USA
    233 schema:name Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
    234 The Fu Foundation School of Engineering and Applied Science, Columbia University, 10027, New York, NY, USA
    235 rdf:type schema:Organization
    236 grid-institutes:grid.35030.35 schema:alternateName Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
    237 schema:name Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China
    238 rdf:type schema:Organization
    239 grid-institutes:grid.412022.7 schema:alternateName Singapore-Jiangsu Joint Research Center for Organic/Bio-electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, 211816, Nanjing, China
    240 schema:name Singapore-Jiangsu Joint Research Center for Organic/Bio-electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, 211816, Nanjing, China
    241 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...