On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Stephan Klaus

ABSTRACT

For a finitely triangulated closed surface M2, let αx be the sum of angles at a vertex x. By the well-known combinatorial version of the 2- dimensional Gauss-Bonnet Theorem, it holds Σx(2π - αx) = 2πχ(M2), where χ denotes the Euler characteristic of M2, αx denotes the sum of angles at the vertex x, and the sum is over all vertices of the triangulation. We give here an elementary proof of a straightforward higher-dimensional generalization to Euclidean simplicial complexes K without assuming any combinatorial manifold condition. First, we recall some facts on simplicial complexes, the Euler characteristics and its local version at a vertex. Then we define δ(τ) as the normed dihedral angle defect around a simplex τ. Our main result is Στ (-1)dim(τ)δ(τ) = χ(K), where the sum is over all simplices τ of the triangulation. Then we give a definition of curvature κ(x) at a vertex and we prove the vertex-version Σx∈K0 κ(x) = χ(K) of this result. It also possible to prove Morse-type inequalities. Moreover, we can apply this result to combinatorial (n + 1)-manifolds W with boundary B, where we prove that the difference of Euler characteristics is given by the sum of curvatures over the interior of W plus a contribution from the normal curvature along the boundary B: χ(W)−12χ(B)=∑τ∈W−B(−1)dim(τ)+∑τ∈B(−1)dim(τ)ρ(τ). More... »

PAGES

1345-1362

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11464-016-0575-2

DOI

http://dx.doi.org/10.1007/s11464-016-0575-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029723871


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematical Research Institute of Oberwolfach", 
          "id": "https://www.grid.ac/institutes/grid.429497.5", 
          "name": [
            "Scientific Administrator of the MFO and Adjunct Professor at Mainz University, Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO), Schwarzwaldstrasse 9-11, D-77709, Oberwolfach-Walke, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klaus", 
        "givenName": "Stephan", 
        "id": "sg:person.012623331625.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623331625.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02187824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004488834", 
          "https://doi.org/10.1007/bf02187824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02187824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004488834", 
          "https://doi.org/10.1007/bf02187824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02187824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004488834", 
          "https://doi.org/10.1007/bf02187824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-93815-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010618542", 
          "https://doi.org/10.1007/978-3-540-93815-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-93815-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010618542", 
          "https://doi.org/10.1007/978-3-540-93815-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-008-0029-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011083946", 
          "https://doi.org/10.1007/s11425-008-0029-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-39482-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019875878", 
          "https://doi.org/10.1007/3-540-39482-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-39482-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019875878", 
          "https://doi.org/10.1007/3-540-39482-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1943-0007627-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029562868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-005-1221-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038729444", 
          "https://doi.org/10.1007/s00454-005-1221-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-005-1221-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038729444", 
          "https://doi.org/10.1007/s00454-005-1221-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-004-2385-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038994821", 
          "https://doi.org/10.1007/s10711-004-2385-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-004-2385-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038994821", 
          "https://doi.org/10.1007/s10711-004-2385-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039910313", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4072-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039910313", 
          "https://doi.org/10.1007/978-1-4612-4072-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4072-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039910313", 
          "https://doi.org/10.1007/978-1-4612-4072-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-2012-11182-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059333624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2317380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069884185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1964-053-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1966-012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214428092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084458775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400881826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096910888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "For a finitely triangulated closed surface M2, let \u03b1x be the sum of angles at a vertex x. By the well-known combinatorial version of the 2- dimensional Gauss-Bonnet Theorem, it holds \u03a3x(2\u03c0 - \u03b1x) = 2\u03c0\u03c7(M2), where \u03c7 denotes the Euler characteristic of M2, \u03b1x denotes the sum of angles at the vertex x, and the sum is over all vertices of the triangulation. We give here an elementary proof of a straightforward higher-dimensional generalization to Euclidean simplicial complexes K without assuming any combinatorial manifold condition. First, we recall some facts on simplicial complexes, the Euler characteristics and its local version at a vertex. Then we define \u03b4(\u03c4) as the normed dihedral angle defect around a simplex \u03c4. Our main result is \u03a3\u03c4 (-1)dim(\u03c4)\u03b4(\u03c4) = \u03c7(K), where the sum is over all simplices \u03c4 of the triangulation. Then we give a definition of curvature \u03ba(x) at a vertex and we prove the vertex-version \u03a3x\u2208K0 \u03ba(x) = \u03c7(K) of this result. It also possible to prove Morse-type inequalities. Moreover, we can apply this result to combinatorial (n + 1)-manifolds W with boundary B, where we prove that the difference of Euler characteristics is given by the sum of curvatures over the interior of W plus a contribution from the normal curvature along the boundary B: \u03c7(W)\u221212\u03c7(B)=\u2211\u03c4\u2208W\u2212B(\u22121)dim(\u03c4)+\u2211\u03c4\u2208B(\u22121)dim(\u03c4)\u03c1(\u03c4).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11464-016-0575-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047753", 
        "issn": [
          "1673-3452", 
          "1673-3576"
        ], 
        "name": "Frontiers of Mathematics in China", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes", 
    "pagination": "1345-1362", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d9954eb407165c0ad6cd8ee5f8f164c1e7ca9cfa0cbfbf373c549f440575eca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11464-016-0575-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029723871"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11464-016-0575-2", 
      "https://app.dimensions.ai/details/publication/pub.1029723871"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11464-016-0575-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11464-016-0575-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11464-016-0575-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11464-016-0575-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11464-016-0575-2'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11464-016-0575-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne7467ef7185d4a418e867d5446c19ac6
4 schema:citation sg:pub.10.1007/3-540-39482-6
5 sg:pub.10.1007/978-1-4612-4072-3
6 sg:pub.10.1007/978-3-540-93815-6
7 sg:pub.10.1007/bf02187824
8 sg:pub.10.1007/s00454-005-1221-z
9 sg:pub.10.1007/s10711-004-2385-z
10 sg:pub.10.1007/s11425-008-0029-8
11 https://app.dimensions.ai/details/publication/pub.1039910313
12 https://doi.org/10.1090/s0002-9939-2012-11182-7
13 https://doi.org/10.1090/s0002-9947-1943-0007627-9
14 https://doi.org/10.1515/9781400881826
15 https://doi.org/10.2307/1969302
16 https://doi.org/10.2307/2317380
17 https://doi.org/10.4153/cjm-1964-053-0
18 https://doi.org/10.4153/cjm-1966-012-9
19 https://doi.org/10.4310/jdg/1214428092
20 schema:datePublished 2016-10
21 schema:datePublishedReg 2016-10-01
22 schema:description For a finitely triangulated closed surface M2, let αx be the sum of angles at a vertex x. By the well-known combinatorial version of the 2- dimensional Gauss-Bonnet Theorem, it holds Σx(2π - αx) = 2πχ(M2), where χ denotes the Euler characteristic of M2, αx denotes the sum of angles at the vertex x, and the sum is over all vertices of the triangulation. We give here an elementary proof of a straightforward higher-dimensional generalization to Euclidean simplicial complexes K without assuming any combinatorial manifold condition. First, we recall some facts on simplicial complexes, the Euler characteristics and its local version at a vertex. Then we define δ(τ) as the normed dihedral angle defect around a simplex τ. Our main result is Στ (-1)dim(τ)δ(τ) = χ(K), where the sum is over all simplices τ of the triangulation. Then we give a definition of curvature κ(x) at a vertex and we prove the vertex-version Σx∈K0 κ(x) = χ(K) of this result. It also possible to prove Morse-type inequalities. Moreover, we can apply this result to combinatorial (n + 1)-manifolds W with boundary B, where we prove that the difference of Euler characteristics is given by the sum of curvatures over the interior of W plus a contribution from the normal curvature along the boundary B: χ(W)−12χ(B)=∑τ∈W−B(−1)dim(τ)+∑τ∈B(−1)dim(τ)ρ(τ).
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2c255cb979fd4fea990392366ac62a67
27 N50718e20537a47eea2e437a14d22ac91
28 sg:journal.1047753
29 schema:name On combinatorial Gauss-Bonnet Theorem for general Euclidean simplicial complexes
30 schema:pagination 1345-1362
31 schema:productId N7e0ef11414de46c9be233a43bc7bbafe
32 Nce9c14cee6424fe2bad6a7dcea86454c
33 Nec60ef67629e43d19ddfa28ff99fe9c9
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029723871
35 https://doi.org/10.1007/s11464-016-0575-2
36 schema:sdDatePublished 2019-04-11T00:18
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N2515b33ab2ed4144b82a50e188d429af
39 schema:url http://link.springer.com/10.1007%2Fs11464-016-0575-2
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N2515b33ab2ed4144b82a50e188d429af schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N2c255cb979fd4fea990392366ac62a67 schema:issueNumber 5
46 rdf:type schema:PublicationIssue
47 N50718e20537a47eea2e437a14d22ac91 schema:volumeNumber 11
48 rdf:type schema:PublicationVolume
49 N7e0ef11414de46c9be233a43bc7bbafe schema:name doi
50 schema:value 10.1007/s11464-016-0575-2
51 rdf:type schema:PropertyValue
52 Nce9c14cee6424fe2bad6a7dcea86454c schema:name dimensions_id
53 schema:value pub.1029723871
54 rdf:type schema:PropertyValue
55 Ne7467ef7185d4a418e867d5446c19ac6 rdf:first sg:person.012623331625.21
56 rdf:rest rdf:nil
57 Nec60ef67629e43d19ddfa28ff99fe9c9 schema:name readcube_id
58 schema:value 8d9954eb407165c0ad6cd8ee5f8f164c1e7ca9cfa0cbfbf373c549f440575eca
59 rdf:type schema:PropertyValue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1047753 schema:issn 1673-3452
67 1673-3576
68 schema:name Frontiers of Mathematics in China
69 rdf:type schema:Periodical
70 sg:person.012623331625.21 schema:affiliation https://www.grid.ac/institutes/grid.429497.5
71 schema:familyName Klaus
72 schema:givenName Stephan
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623331625.21
74 rdf:type schema:Person
75 sg:pub.10.1007/3-540-39482-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019875878
76 https://doi.org/10.1007/3-540-39482-6
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-1-4612-4072-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039910313
79 https://doi.org/10.1007/978-1-4612-4072-3
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/978-3-540-93815-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010618542
82 https://doi.org/10.1007/978-3-540-93815-6
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02187824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004488834
85 https://doi.org/10.1007/bf02187824
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00454-005-1221-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038729444
88 https://doi.org/10.1007/s00454-005-1221-z
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s10711-004-2385-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038994821
91 https://doi.org/10.1007/s10711-004-2385-z
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11425-008-0029-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011083946
94 https://doi.org/10.1007/s11425-008-0029-8
95 rdf:type schema:CreativeWork
96 https://app.dimensions.ai/details/publication/pub.1039910313 schema:CreativeWork
97 https://doi.org/10.1090/s0002-9939-2012-11182-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059333624
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/s0002-9947-1943-0007627-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029562868
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1515/9781400881826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096910888
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2307/1969302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674693
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2307/2317380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069884185
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4153/cjm-1964-053-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264592
108 rdf:type schema:CreativeWork
109 https://doi.org/10.4153/cjm-1966-012-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264729
110 rdf:type schema:CreativeWork
111 https://doi.org/10.4310/jdg/1214428092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458775
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.429497.5 schema:alternateName Mathematical Research Institute of Oberwolfach
114 schema:name Scientific Administrator of the MFO and Adjunct Professor at Mainz University, Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO), Schwarzwaldstrasse 9-11, D-77709, Oberwolfach-Walke, Germany
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...