Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Zaobao Liu, Jianfu Shao, Weiya Xu, Qier Wu

ABSTRACT

The unconfined compressive strength (UCS) of rocks, one fundamental parameter, is widely used in geotechnical engineering. Direct determination of the UCS involves expensive, time-consuming and destructive laboratory tests. These tests sometimes are difficult to be prepared for cracked rocks. In this way, indirect estimation of the UCS of rocks is widely discussed for simplicity and non-destructivity. Conventional methods for indirect estimation of the UCS of rocks are based on regression analysis which has poor accuracy or generalization ability. This paper presents the extreme learning machine (ELM) for indirect estimation of the UCS of rocks according to the correlated indexes including the mineral composition (calcite, clay, quartz, opaque minerals and biotile), specific density, dry unit weight, total porosity, effective porosity, slake durability index (fourth cycle), P-wave velocity in dry samples and in the solid part of the sample. The correlation between the UCS of rocks and each related index is studied by linear regression analysis. Based on this, the ELM approach is implemented for estimation of the UCS of rocks by comparison with other neural networks and the support vector machines (SVM). Also, parameter sensitivity is investigated on the predictive performance of the ELM by two target functions. The results turn out that the ELM is advantageous to the mentioned neural networks and the SVM in the estimation of the UCS of rocks. The ELM performs fast and has good generalization ability. It is a potential robust method for approaching complex, nonlinear problems in geotechnical engineering. More... »

PAGES

651-663

References to SciGraph publications

  • 2008-10. An Example of Artificial Neural Network (ANN) Application for Indirect Estimation of Rock Parameters in ROCK MECHANICS AND ROCK ENGINEERING
  • 1981-03. Statistical prediction formula for compressive strength of a rock in ROCK MECHANICS FELSMECHANIK MECANIQUE DES ROCHES
  • 2006-02. Fuzzy and Multiple Regression Modelling for Evaluation of Intact Rock Strength Based on Point Load, Schmidt Hammer and Sonic Velocity in ROCK MECHANICS AND ROCK ENGINEERING
  • 2014-01. An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining in NEURAL COMPUTING AND APPLICATIONS
  • 2012-01. Effects of Rock Classes and Porosity on the Relation between Uniaxial Compressive Strength and Some Rock Properties for Carbonate Rocks in ROCK MECHANICS AND ROCK ENGINEERING
  • 2011-04. Development of a New Method for Estimating the Indirect Uniaxial Compressive Strength of Rock Using Schmidt Hammer in BHM BERG- UND HÜTTENMÄNNISCHE MONATSHEFTE
  • 2011-06. Extreme learning machines: a survey in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2012-11. Application of Generalized Regression Neural Networks in Predicting the Unconfined Compressive Strength of Carbonate Rocks in ROCK MECHANICS AND ROCK ENGINEERING
  • 2005-09. A Comparative Evaluation of Indirect Methods to Estimate the Compressive Strength of Rocks in ROCK MECHANICS AND ROCK ENGINEERING
  • 2013-08. A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks in NEURAL COMPUTING AND APPLICATIONS
  • 2004-10. The Influence of Porosity on Tensile and Compressive Strength of Porous Chalks in ROCK MECHANICS AND ROCK ENGINEERING
  • 2013-08. Macrostructural changes in compacted earthen construction materials under loading in ACTA GEOTECHNICA
  • 2008-08. Estimation of strength and deformation properties of Quaternary caliche deposits in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2013-08. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation in ACTA GEOTECHNICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1

    DOI

    http://dx.doi.org/10.1007/s11440-014-0316-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004014708


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lille 1 University", 
              "id": "https://www.grid.ac/institutes/grid.4461.7", 
              "name": [
                "Geotechnical Research Institute, Hohai University, 210098, Nanjing, China", 
                "Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d\u2019Ascq, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zaobao", 
            "id": "sg:person.015072263437.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072263437.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lille 1 University", 
              "id": "https://www.grid.ac/institutes/grid.4461.7", 
              "name": [
                "Geotechnical Research Institute, Hohai University, 210098, Nanjing, China", 
                "Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d\u2019Ascq, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shao", 
            "givenName": "Jianfu", 
            "id": "sg:person.012371647632.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371647632.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hohai University", 
              "id": "https://www.grid.ac/institutes/grid.257065.3", 
              "name": [
                "Geotechnical Research Institute, Hohai University, 210098, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Weiya", 
            "id": "sg:person.012016401215.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016401215.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lille 1 University", 
              "id": "https://www.grid.ac/institutes/grid.4461.7", 
              "name": [
                "Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d\u2019Ascq, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Qier", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.engappai.2003.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002343563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2011.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005670256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1365-1609(01)00039-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006423170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2011.12.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006604319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2004.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007501992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(93)90404-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007950308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00501-011-0644-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008072625", 
              "https://doi.org/10.1007/s00501-011-0644-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.03.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008777069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.03.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008777069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomorph.2005.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009003366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2009.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010154623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-0944-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010393270", 
              "https://doi.org/10.1007/s00521-012-0944-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-011-0169-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010948386", 
              "https://doi.org/10.1007/s00603-011-0169-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11440-012-0203-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012025234", 
              "https://doi.org/10.1007/s11440-012-0203-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1674-5264(09)60158-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013528580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0148-9062(98)00174-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015003613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2003.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017347908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.11.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017724349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-003-0020-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020487735", 
              "https://doi.org/10.1007/s00603-003-0020-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.12.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021486101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0013-7952(00)00081-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021771757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-012-1221-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023245237", 
              "https://doi.org/10.1007/s00521-012-1221-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-007-0138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024289044", 
              "https://doi.org/10.1007/s00603-007-0138-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-007-0138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024289044", 
              "https://doi.org/10.1007/s00603-007-0138-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(79)91451-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025895526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(79)91451-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025895526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-005-0050-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028753726", 
              "https://doi.org/10.1007/s00603-005-0050-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-005-0050-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028753726", 
              "https://doi.org/10.1007/s00603-005-0050-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0013-7952(02)00023-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029647282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(64)90066-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029656293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-005-0061-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029766498", 
              "https://doi.org/10.1007/s00603-005-0061-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-005-0061-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029766498", 
              "https://doi.org/10.1007/s00603-005-0061-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-005-0061-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029766498", 
              "https://doi.org/10.1007/s00603-005-0061-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2012.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029813638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2007.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030165002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-011-0019-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031892380", 
              "https://doi.org/10.1007/s13042-011-0019-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2008.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032522399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11440-012-0200-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033743930", 
              "https://doi.org/10.1007/s11440-012-0200-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/512727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035736762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0148-9062(98)00173-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036228053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(93)90004-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038009865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(93)90004-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038009865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038265102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2006.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039569058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2012.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039920632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2007.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040846051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0013-7952(02)00041-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042295838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(95)00056-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042661693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2004.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042815896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-008-0146-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043147650", 
              "https://doi.org/10.1007/s10064-008-0146-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-008-0146-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043147650", 
              "https://doi.org/10.1007/s10064-008-0146-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0148-9062(99)00007-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044532046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2004.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045513749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(90)91001-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046250288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(90)91001-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046250288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-7952(75)90024-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048374250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-7952(75)90024-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048374250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2012.07.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048553710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-012-0239-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051295811", 
              "https://doi.org/10.1007/s00603-012-0239-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01243532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051559979", 
              "https://doi.org/10.1007/bf01243532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2012.05.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051818306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrmms.2010.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052664558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0148-9062(81)90056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052966494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2010.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053587613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2006.873687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061358350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1127/0935-1221/2003/0015-0855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062698177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21236/ad0646610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091886336"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10", 
        "datePublishedReg": "2015-10-01", 
        "description": "The unconfined compressive strength (UCS) of rocks, one fundamental parameter, is widely used in geotechnical engineering. Direct determination of the UCS involves expensive, time-consuming and destructive laboratory tests. These tests sometimes are difficult to be prepared for cracked rocks. In this way, indirect estimation of the UCS of rocks is widely discussed for simplicity and non-destructivity. Conventional methods for indirect estimation of the UCS of rocks are based on regression analysis which has poor accuracy or generalization ability. This paper presents the extreme learning machine (ELM) for indirect estimation of the UCS of rocks according to the correlated indexes including the mineral composition (calcite, clay, quartz, opaque minerals and biotile), specific density, dry unit weight, total porosity, effective porosity, slake durability index (fourth cycle), P-wave velocity in dry samples and in the solid part of the sample. The correlation between the UCS of rocks and each related index is studied by linear regression analysis. Based on this, the ELM approach is implemented for estimation of the UCS of rocks by comparison with other neural networks and the support vector machines (SVM). Also, parameter sensitivity is investigated on the predictive performance of the ELM by two target functions. The results turn out that the ELM is advantageous to the mentioned neural networks and the SVM in the estimation of the UCS of rocks. The ELM performs fast and has good generalization ability. It is a potential robust method for approaching complex, nonlinear problems in geotechnical engineering.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11440-014-0316-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7208331", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136056", 
            "issn": [
              "1861-1125", 
              "1861-1133"
            ], 
            "name": "Acta Geotechnica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine", 
        "pagination": "651-663", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1320812e2eda9db8456d441319f5148ee5fe1f4a7e43a00f2f761c9b39520fd1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11440-014-0316-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004014708"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11440-014-0316-1", 
          "https://app.dimensions.ai/details/publication/pub.1004014708"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000520.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11440-014-0316-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    272 TRIPLES      21 PREDICATES      84 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11440-014-0316-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nab3989f3b47b4c1782a5fe34673c9fc3
    4 schema:citation sg:pub.10.1007/bf01243532
    5 sg:pub.10.1007/s00501-011-0644-5
    6 sg:pub.10.1007/s00521-012-0944-z
    7 sg:pub.10.1007/s00521-012-1221-x
    8 sg:pub.10.1007/s00603-003-0020-1
    9 sg:pub.10.1007/s00603-005-0050-y
    10 sg:pub.10.1007/s00603-005-0061-8
    11 sg:pub.10.1007/s00603-007-0138-7
    12 sg:pub.10.1007/s00603-011-0169-y
    13 sg:pub.10.1007/s00603-012-0239-9
    14 sg:pub.10.1007/s10064-008-0146-1
    15 sg:pub.10.1007/s11440-012-0200-9
    16 sg:pub.10.1007/s11440-012-0203-6
    17 sg:pub.10.1007/s13042-011-0019-y
    18 https://doi.org/10.1016/0013-7952(75)90024-1
    19 https://doi.org/10.1016/0148-9062(64)90066-x
    20 https://doi.org/10.1016/0148-9062(79)91451-7
    21 https://doi.org/10.1016/0148-9062(81)90056-5
    22 https://doi.org/10.1016/0148-9062(90)91001-n
    23 https://doi.org/10.1016/0148-9062(93)90004-w
    24 https://doi.org/10.1016/0148-9062(93)90404-2
    25 https://doi.org/10.1016/0148-9062(95)00056-9
    26 https://doi.org/10.1016/j.asoc.2010.10.008
    27 https://doi.org/10.1016/j.engappai.2003.11.006
    28 https://doi.org/10.1016/j.enggeo.2003.10.001
    29 https://doi.org/10.1016/j.enggeo.2007.10.009
    30 https://doi.org/10.1016/j.enggeo.2007.12.004
    31 https://doi.org/10.1016/j.enggeo.2008.02.003
    32 https://doi.org/10.1016/j.eswa.2010.11.027
    33 https://doi.org/10.1016/j.eswa.2012.05.048
    34 https://doi.org/10.1016/j.geomorph.2005.04.011
    35 https://doi.org/10.1016/j.ijrmms.2004.01.011
    36 https://doi.org/10.1016/j.ijrmms.2004.01.012
    37 https://doi.org/10.1016/j.ijrmms.2004.08.005
    38 https://doi.org/10.1016/j.ijrmms.2006.07.008
    39 https://doi.org/10.1016/j.ijrmms.2009.04.009
    40 https://doi.org/10.1016/j.ijrmms.2010.04.006
    41 https://doi.org/10.1016/j.ijrmms.2012.07.033
    42 https://doi.org/10.1016/j.ijrmms.2012.10.002
    43 https://doi.org/10.1016/j.neucom.2005.12.126
    44 https://doi.org/10.1016/j.neucom.2010.12.034
    45 https://doi.org/10.1016/j.neucom.2011.06.013
    46 https://doi.org/10.1016/j.neucom.2011.12.045
    47 https://doi.org/10.1016/j.neucom.2012.08.010
    48 https://doi.org/10.1016/j.patcog.2005.03.028
    49 https://doi.org/10.1016/s0013-7952(00)00081-8
    50 https://doi.org/10.1016/s0013-7952(02)00023-6
    51 https://doi.org/10.1016/s0013-7952(02)00041-8
    52 https://doi.org/10.1016/s0148-9062(98)00173-9
    53 https://doi.org/10.1016/s0148-9062(98)00174-0
    54 https://doi.org/10.1016/s0148-9062(99)00007-8
    55 https://doi.org/10.1016/s1365-1609(01)00039-9
    56 https://doi.org/10.1016/s1674-5264(09)60158-7
    57 https://doi.org/10.1109/lgrs.2006.873687
    58 https://doi.org/10.1127/0935-1221/2003/0015-0855
    59 https://doi.org/10.1155/2013/512727
    60 https://doi.org/10.21236/ad0646610
    61 schema:datePublished 2015-10
    62 schema:datePublishedReg 2015-10-01
    63 schema:description The unconfined compressive strength (UCS) of rocks, one fundamental parameter, is widely used in geotechnical engineering. Direct determination of the UCS involves expensive, time-consuming and destructive laboratory tests. These tests sometimes are difficult to be prepared for cracked rocks. In this way, indirect estimation of the UCS of rocks is widely discussed for simplicity and non-destructivity. Conventional methods for indirect estimation of the UCS of rocks are based on regression analysis which has poor accuracy or generalization ability. This paper presents the extreme learning machine (ELM) for indirect estimation of the UCS of rocks according to the correlated indexes including the mineral composition (calcite, clay, quartz, opaque minerals and biotile), specific density, dry unit weight, total porosity, effective porosity, slake durability index (fourth cycle), P-wave velocity in dry samples and in the solid part of the sample. The correlation between the UCS of rocks and each related index is studied by linear regression analysis. Based on this, the ELM approach is implemented for estimation of the UCS of rocks by comparison with other neural networks and the support vector machines (SVM). Also, parameter sensitivity is investigated on the predictive performance of the ELM by two target functions. The results turn out that the ELM is advantageous to the mentioned neural networks and the SVM in the estimation of the UCS of rocks. The ELM performs fast and has good generalization ability. It is a potential robust method for approaching complex, nonlinear problems in geotechnical engineering.
    64 schema:genre research_article
    65 schema:inLanguage en
    66 schema:isAccessibleForFree false
    67 schema:isPartOf N0ed73b8d2ceb43dcb94715d5169fc3cf
    68 Nb7e46676b7654296b4acfd3490542d5b
    69 sg:journal.1136056
    70 schema:name Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine
    71 schema:pagination 651-663
    72 schema:productId Ncc4b1464baf74ca48b177ed3c99f95cb
    73 Nf489bce9f9ac41c28b07315714e04a92
    74 Nf7494904688b439582730d8a89a8d098
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004014708
    76 https://doi.org/10.1007/s11440-014-0316-1
    77 schema:sdDatePublished 2019-04-11T00:18
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Ndbf4d7fbfe9b42c3a391558d50152fe9
    80 schema:url http://link.springer.com/10.1007%2Fs11440-014-0316-1
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N0ed73b8d2ceb43dcb94715d5169fc3cf schema:volumeNumber 10
    85 rdf:type schema:PublicationVolume
    86 N55d2d8fff65d4d608961c983927cd5ed rdf:first sg:person.012371647632.26
    87 rdf:rest Nbefcdbe27c25441b805ff33f0ba72dcb
    88 N60142865ca4e4bda8552306df6233394 rdf:first N696bbdc68549495aa40d92653dccae6d
    89 rdf:rest rdf:nil
    90 N696bbdc68549495aa40d92653dccae6d schema:affiliation https://www.grid.ac/institutes/grid.4461.7
    91 schema:familyName Wu
    92 schema:givenName Qier
    93 rdf:type schema:Person
    94 Nab3989f3b47b4c1782a5fe34673c9fc3 rdf:first sg:person.015072263437.00
    95 rdf:rest N55d2d8fff65d4d608961c983927cd5ed
    96 Nb7e46676b7654296b4acfd3490542d5b schema:issueNumber 5
    97 rdf:type schema:PublicationIssue
    98 Nbefcdbe27c25441b805ff33f0ba72dcb rdf:first sg:person.012016401215.33
    99 rdf:rest N60142865ca4e4bda8552306df6233394
    100 Ncc4b1464baf74ca48b177ed3c99f95cb schema:name dimensions_id
    101 schema:value pub.1004014708
    102 rdf:type schema:PropertyValue
    103 Ndbf4d7fbfe9b42c3a391558d50152fe9 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nf489bce9f9ac41c28b07315714e04a92 schema:name readcube_id
    106 schema:value 1320812e2eda9db8456d441319f5148ee5fe1f4a7e43a00f2f761c9b39520fd1
    107 rdf:type schema:PropertyValue
    108 Nf7494904688b439582730d8a89a8d098 schema:name doi
    109 schema:value 10.1007/s11440-014-0316-1
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Information and Computing Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Artificial Intelligence and Image Processing
    116 rdf:type schema:DefinedTerm
    117 sg:grant.7208331 http://pending.schema.org/fundedItem sg:pub.10.1007/s11440-014-0316-1
    118 rdf:type schema:MonetaryGrant
    119 sg:journal.1136056 schema:issn 1861-1125
    120 1861-1133
    121 schema:name Acta Geotechnica
    122 rdf:type schema:Periodical
    123 sg:person.012016401215.33 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
    124 schema:familyName Xu
    125 schema:givenName Weiya
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016401215.33
    127 rdf:type schema:Person
    128 sg:person.012371647632.26 schema:affiliation https://www.grid.ac/institutes/grid.4461.7
    129 schema:familyName Shao
    130 schema:givenName Jianfu
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371647632.26
    132 rdf:type schema:Person
    133 sg:person.015072263437.00 schema:affiliation https://www.grid.ac/institutes/grid.4461.7
    134 schema:familyName Liu
    135 schema:givenName Zaobao
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072263437.00
    137 rdf:type schema:Person
    138 sg:pub.10.1007/bf01243532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051559979
    139 https://doi.org/10.1007/bf01243532
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s00501-011-0644-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008072625
    142 https://doi.org/10.1007/s00501-011-0644-5
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s00521-012-0944-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010393270
    145 https://doi.org/10.1007/s00521-012-0944-z
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00521-012-1221-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023245237
    148 https://doi.org/10.1007/s00521-012-1221-x
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00603-003-0020-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020487735
    151 https://doi.org/10.1007/s00603-003-0020-1
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00603-005-0050-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028753726
    154 https://doi.org/10.1007/s00603-005-0050-y
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00603-005-0061-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766498
    157 https://doi.org/10.1007/s00603-005-0061-8
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00603-007-0138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024289044
    160 https://doi.org/10.1007/s00603-007-0138-7
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00603-011-0169-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010948386
    163 https://doi.org/10.1007/s00603-011-0169-y
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00603-012-0239-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051295811
    166 https://doi.org/10.1007/s00603-012-0239-9
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s10064-008-0146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043147650
    169 https://doi.org/10.1007/s10064-008-0146-1
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s11440-012-0200-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033743930
    172 https://doi.org/10.1007/s11440-012-0200-9
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s11440-012-0203-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012025234
    175 https://doi.org/10.1007/s11440-012-0203-6
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s13042-011-0019-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031892380
    178 https://doi.org/10.1007/s13042-011-0019-y
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/0013-7952(75)90024-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048374250
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/0148-9062(64)90066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029656293
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/0148-9062(79)91451-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025895526
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/0148-9062(81)90056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052966494
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/0148-9062(90)91001-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1046250288
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/0148-9062(93)90004-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1038009865
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/0148-9062(93)90404-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007950308
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/0148-9062(95)00056-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042661693
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/j.asoc.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053587613
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.engappai.2003.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002343563
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.enggeo.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347908
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.enggeo.2007.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040846051
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.enggeo.2007.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030165002
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.enggeo.2008.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032522399
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.eswa.2010.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724349
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.eswa.2012.05.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051818306
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.geomorph.2005.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009003366
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.ijrmms.2004.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042815896
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.ijrmms.2004.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007501992
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.ijrmms.2004.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045513749
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.ijrmms.2006.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039569058
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.ijrmms.2009.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010154623
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.ijrmms.2010.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052664558
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.ijrmms.2012.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048553710
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.ijrmms.2012.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039920632
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.neucom.2010.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021486101
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.neucom.2011.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005670256
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.neucom.2011.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006604319
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.neucom.2012.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029813638
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.patcog.2005.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008777069
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/s0013-7952(00)00081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021771757
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/s0013-7952(02)00023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029647282
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/s0013-7952(02)00041-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042295838
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/s0148-9062(98)00173-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036228053
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/s0148-9062(98)00174-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015003613
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/s0148-9062(99)00007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532046
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1016/s1365-1609(01)00039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006423170
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1016/s1674-5264(09)60158-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013528580
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1109/lgrs.2006.873687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358350
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1127/0935-1221/2003/0015-0855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062698177
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1155/2013/512727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035736762
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.21236/ad0646610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091886336
    265 rdf:type schema:CreativeWork
    266 https://www.grid.ac/institutes/grid.257065.3 schema:alternateName Hohai University
    267 schema:name Geotechnical Research Institute, Hohai University, 210098, Nanjing, China
    268 rdf:type schema:Organization
    269 https://www.grid.ac/institutes/grid.4461.7 schema:alternateName Lille 1 University
    270 schema:name Geotechnical Research Institute, Hohai University, 210098, Nanjing, China
    271 Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d’Ascq, France
    272 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...