Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Zaobao Liu, Jianfu Shao, Weiya Xu, Qier Wu

ABSTRACT

The unconfined compressive strength (UCS) of rocks, one fundamental parameter, is widely used in geotechnical engineering. Direct determination of the UCS involves expensive, time-consuming and destructive laboratory tests. These tests sometimes are difficult to be prepared for cracked rocks. In this way, indirect estimation of the UCS of rocks is widely discussed for simplicity and non-destructivity. Conventional methods for indirect estimation of the UCS of rocks are based on regression analysis which has poor accuracy or generalization ability. This paper presents the extreme learning machine (ELM) for indirect estimation of the UCS of rocks according to the correlated indexes including the mineral composition (calcite, clay, quartz, opaque minerals and biotile), specific density, dry unit weight, total porosity, effective porosity, slake durability index (fourth cycle), P-wave velocity in dry samples and in the solid part of the sample. The correlation between the UCS of rocks and each related index is studied by linear regression analysis. Based on this, the ELM approach is implemented for estimation of the UCS of rocks by comparison with other neural networks and the support vector machines (SVM). Also, parameter sensitivity is investigated on the predictive performance of the ELM by two target functions. The results turn out that the ELM is advantageous to the mentioned neural networks and the SVM in the estimation of the UCS of rocks. The ELM performs fast and has good generalization ability. It is a potential robust method for approaching complex, nonlinear problems in geotechnical engineering. More... »

PAGES

651-663

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1

DOI

http://dx.doi.org/10.1007/s11440-014-0316-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004014708


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lille 1 University", 
          "id": "https://www.grid.ac/institutes/grid.4461.7", 
          "name": [
            "Geotechnical Research Institute, Hohai University, 210098, Nanjing, China", 
            "Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d\u2019Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zaobao", 
        "id": "sg:person.015072263437.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072263437.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lille 1 University", 
          "id": "https://www.grid.ac/institutes/grid.4461.7", 
          "name": [
            "Geotechnical Research Institute, Hohai University, 210098, Nanjing, China", 
            "Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d\u2019Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Jianfu", 
        "id": "sg:person.012371647632.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371647632.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hohai University", 
          "id": "https://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "Geotechnical Research Institute, Hohai University, 210098, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Weiya", 
        "id": "sg:person.012016401215.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016401215.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lille 1 University", 
          "id": "https://www.grid.ac/institutes/grid.4461.7", 
          "name": [
            "Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d\u2019Ascq, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Qier", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.engappai.2003.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002343563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005670256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1365-1609(01)00039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006423170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006604319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2004.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007501992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(93)90404-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007950308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00501-011-0644-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008072625", 
          "https://doi.org/10.1007/s00501-011-0644-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008777069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008777069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2005.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009003366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2009.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010154623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-0944-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010393270", 
          "https://doi.org/10.1007/s00521-012-0944-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-011-0169-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010948386", 
          "https://doi.org/10.1007/s00603-011-0169-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11440-012-0203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012025234", 
          "https://doi.org/10.1007/s11440-012-0203-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1674-5264(09)60158-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013528580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0148-9062(98)00174-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015003613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2003.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017347908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-003-0020-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020487735", 
          "https://doi.org/10.1007/s00603-003-0020-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021486101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(00)00081-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021771757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-012-1221-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023245237", 
          "https://doi.org/10.1007/s00521-012-1221-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-007-0138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024289044", 
          "https://doi.org/10.1007/s00603-007-0138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-007-0138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024289044", 
          "https://doi.org/10.1007/s00603-007-0138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(79)91451-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025895526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(79)91451-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025895526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-005-0050-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028753726", 
          "https://doi.org/10.1007/s00603-005-0050-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-005-0050-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028753726", 
          "https://doi.org/10.1007/s00603-005-0050-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(02)00023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029647282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(64)90066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029656293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-005-0061-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766498", 
          "https://doi.org/10.1007/s00603-005-0061-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-005-0061-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766498", 
          "https://doi.org/10.1007/s00603-005-0061-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-005-0061-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766498", 
          "https://doi.org/10.1007/s00603-005-0061-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029813638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2007.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030165002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13042-011-0019-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031892380", 
          "https://doi.org/10.1007/s13042-011-0019-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2008.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032522399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11440-012-0200-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033743930", 
          "https://doi.org/10.1007/s11440-012-0200-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/512727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035736762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0148-9062(98)00173-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036228053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(93)90004-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038009865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(93)90004-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038009865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038265102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2006.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039569058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2012.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039920632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2007.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040846051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-7952(02)00041-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042295838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(95)00056-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042661693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2004.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042815896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043147650", 
          "https://doi.org/10.1007/s10064-008-0146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10064-008-0146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043147650", 
          "https://doi.org/10.1007/s10064-008-0146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0148-9062(99)00007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2004.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045513749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(90)91001-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046250288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(90)91001-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046250288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7952(75)90024-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048374250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7952(75)90024-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048374250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2012.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048553710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-012-0239-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051295811", 
          "https://doi.org/10.1007/s00603-012-0239-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01243532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051559979", 
          "https://doi.org/10.1007/bf01243532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.05.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051818306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmms.2010.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052664558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0148-9062(81)90056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052966494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2010.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053587613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2006.873687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/0935-1221/2003/0015-0855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062698177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ad0646610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091886336"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "The unconfined compressive strength (UCS) of rocks, one fundamental parameter, is widely used in geotechnical engineering. Direct determination of the UCS involves expensive, time-consuming and destructive laboratory tests. These tests sometimes are difficult to be prepared for cracked rocks. In this way, indirect estimation of the UCS of rocks is widely discussed for simplicity and non-destructivity. Conventional methods for indirect estimation of the UCS of rocks are based on regression analysis which has poor accuracy or generalization ability. This paper presents the extreme learning machine (ELM) for indirect estimation of the UCS of rocks according to the correlated indexes including the mineral composition (calcite, clay, quartz, opaque minerals and biotile), specific density, dry unit weight, total porosity, effective porosity, slake durability index (fourth cycle), P-wave velocity in dry samples and in the solid part of the sample. The correlation between the UCS of rocks and each related index is studied by linear regression analysis. Based on this, the ELM approach is implemented for estimation of the UCS of rocks by comparison with other neural networks and the support vector machines (SVM). Also, parameter sensitivity is investigated on the predictive performance of the ELM by two target functions. The results turn out that the ELM is advantageous to the mentioned neural networks and the SVM in the estimation of the UCS of rocks. The ELM performs fast and has good generalization ability. It is a potential robust method for approaching complex, nonlinear problems in geotechnical engineering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11440-014-0316-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7208331", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136056", 
        "issn": [
          "1861-1125", 
          "1861-1133"
        ], 
        "name": "Acta Geotechnica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine", 
    "pagination": "651-663", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1320812e2eda9db8456d441319f5148ee5fe1f4a7e43a00f2f761c9b39520fd1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11440-014-0316-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004014708"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11440-014-0316-1", 
      "https://app.dimensions.ai/details/publication/pub.1004014708"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11440-014-0316-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11440-014-0316-1'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      84 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11440-014-0316-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6d6b0bc3ca2f459e917128f385cb2c68
4 schema:citation sg:pub.10.1007/bf01243532
5 sg:pub.10.1007/s00501-011-0644-5
6 sg:pub.10.1007/s00521-012-0944-z
7 sg:pub.10.1007/s00521-012-1221-x
8 sg:pub.10.1007/s00603-003-0020-1
9 sg:pub.10.1007/s00603-005-0050-y
10 sg:pub.10.1007/s00603-005-0061-8
11 sg:pub.10.1007/s00603-007-0138-7
12 sg:pub.10.1007/s00603-011-0169-y
13 sg:pub.10.1007/s00603-012-0239-9
14 sg:pub.10.1007/s10064-008-0146-1
15 sg:pub.10.1007/s11440-012-0200-9
16 sg:pub.10.1007/s11440-012-0203-6
17 sg:pub.10.1007/s13042-011-0019-y
18 https://doi.org/10.1016/0013-7952(75)90024-1
19 https://doi.org/10.1016/0148-9062(64)90066-x
20 https://doi.org/10.1016/0148-9062(79)91451-7
21 https://doi.org/10.1016/0148-9062(81)90056-5
22 https://doi.org/10.1016/0148-9062(90)91001-n
23 https://doi.org/10.1016/0148-9062(93)90004-w
24 https://doi.org/10.1016/0148-9062(93)90404-2
25 https://doi.org/10.1016/0148-9062(95)00056-9
26 https://doi.org/10.1016/j.asoc.2010.10.008
27 https://doi.org/10.1016/j.engappai.2003.11.006
28 https://doi.org/10.1016/j.enggeo.2003.10.001
29 https://doi.org/10.1016/j.enggeo.2007.10.009
30 https://doi.org/10.1016/j.enggeo.2007.12.004
31 https://doi.org/10.1016/j.enggeo.2008.02.003
32 https://doi.org/10.1016/j.eswa.2010.11.027
33 https://doi.org/10.1016/j.eswa.2012.05.048
34 https://doi.org/10.1016/j.geomorph.2005.04.011
35 https://doi.org/10.1016/j.ijrmms.2004.01.011
36 https://doi.org/10.1016/j.ijrmms.2004.01.012
37 https://doi.org/10.1016/j.ijrmms.2004.08.005
38 https://doi.org/10.1016/j.ijrmms.2006.07.008
39 https://doi.org/10.1016/j.ijrmms.2009.04.009
40 https://doi.org/10.1016/j.ijrmms.2010.04.006
41 https://doi.org/10.1016/j.ijrmms.2012.07.033
42 https://doi.org/10.1016/j.ijrmms.2012.10.002
43 https://doi.org/10.1016/j.neucom.2005.12.126
44 https://doi.org/10.1016/j.neucom.2010.12.034
45 https://doi.org/10.1016/j.neucom.2011.06.013
46 https://doi.org/10.1016/j.neucom.2011.12.045
47 https://doi.org/10.1016/j.neucom.2012.08.010
48 https://doi.org/10.1016/j.patcog.2005.03.028
49 https://doi.org/10.1016/s0013-7952(00)00081-8
50 https://doi.org/10.1016/s0013-7952(02)00023-6
51 https://doi.org/10.1016/s0013-7952(02)00041-8
52 https://doi.org/10.1016/s0148-9062(98)00173-9
53 https://doi.org/10.1016/s0148-9062(98)00174-0
54 https://doi.org/10.1016/s0148-9062(99)00007-8
55 https://doi.org/10.1016/s1365-1609(01)00039-9
56 https://doi.org/10.1016/s1674-5264(09)60158-7
57 https://doi.org/10.1109/lgrs.2006.873687
58 https://doi.org/10.1127/0935-1221/2003/0015-0855
59 https://doi.org/10.1155/2013/512727
60 https://doi.org/10.21236/ad0646610
61 schema:datePublished 2015-10
62 schema:datePublishedReg 2015-10-01
63 schema:description The unconfined compressive strength (UCS) of rocks, one fundamental parameter, is widely used in geotechnical engineering. Direct determination of the UCS involves expensive, time-consuming and destructive laboratory tests. These tests sometimes are difficult to be prepared for cracked rocks. In this way, indirect estimation of the UCS of rocks is widely discussed for simplicity and non-destructivity. Conventional methods for indirect estimation of the UCS of rocks are based on regression analysis which has poor accuracy or generalization ability. This paper presents the extreme learning machine (ELM) for indirect estimation of the UCS of rocks according to the correlated indexes including the mineral composition (calcite, clay, quartz, opaque minerals and biotile), specific density, dry unit weight, total porosity, effective porosity, slake durability index (fourth cycle), P-wave velocity in dry samples and in the solid part of the sample. The correlation between the UCS of rocks and each related index is studied by linear regression analysis. Based on this, the ELM approach is implemented for estimation of the UCS of rocks by comparison with other neural networks and the support vector machines (SVM). Also, parameter sensitivity is investigated on the predictive performance of the ELM by two target functions. The results turn out that the ELM is advantageous to the mentioned neural networks and the SVM in the estimation of the UCS of rocks. The ELM performs fast and has good generalization ability. It is a potential robust method for approaching complex, nonlinear problems in geotechnical engineering.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree false
67 schema:isPartOf N6e6563dca5ad4c43b711d738d545cef9
68 N908aaf4f238045cb86b5d27052fab8f1
69 sg:journal.1136056
70 schema:name Indirect estimation of unconfined compressive strength of carbonate rocks using extreme learning machine
71 schema:pagination 651-663
72 schema:productId N47c12e022c12416cb8f0bfa58a02105f
73 N88f867e616084d398b0bd2fac76a221a
74 N8e9b5cf2e9f14b55abaaec66a01d365b
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004014708
76 https://doi.org/10.1007/s11440-014-0316-1
77 schema:sdDatePublished 2019-04-11T00:18
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N8ce7bdfafeb241c1ad0eb261e0eb39cd
80 schema:url http://link.springer.com/10.1007%2Fs11440-014-0316-1
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N47c12e022c12416cb8f0bfa58a02105f schema:name doi
85 schema:value 10.1007/s11440-014-0316-1
86 rdf:type schema:PropertyValue
87 N59e5ec86910e4d959634e7dfc9c7e83e rdf:first sg:person.012016401215.33
88 rdf:rest Nc97790c5838b406cb557d49aaad89c8b
89 N6d6b0bc3ca2f459e917128f385cb2c68 rdf:first sg:person.015072263437.00
90 rdf:rest Nb41f99ec5638460aad2c2ceb6f0e7386
91 N6e6563dca5ad4c43b711d738d545cef9 schema:volumeNumber 10
92 rdf:type schema:PublicationVolume
93 N88f867e616084d398b0bd2fac76a221a schema:name dimensions_id
94 schema:value pub.1004014708
95 rdf:type schema:PropertyValue
96 N8ce7bdfafeb241c1ad0eb261e0eb39cd schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N8e9b5cf2e9f14b55abaaec66a01d365b schema:name readcube_id
99 schema:value 1320812e2eda9db8456d441319f5148ee5fe1f4a7e43a00f2f761c9b39520fd1
100 rdf:type schema:PropertyValue
101 N908aaf4f238045cb86b5d27052fab8f1 schema:issueNumber 5
102 rdf:type schema:PublicationIssue
103 Nb41f99ec5638460aad2c2ceb6f0e7386 rdf:first sg:person.012371647632.26
104 rdf:rest N59e5ec86910e4d959634e7dfc9c7e83e
105 Nc6a6c9489ca24114984847a296377e31 schema:affiliation https://www.grid.ac/institutes/grid.4461.7
106 schema:familyName Wu
107 schema:givenName Qier
108 rdf:type schema:Person
109 Nc97790c5838b406cb557d49aaad89c8b rdf:first Nc6a6c9489ca24114984847a296377e31
110 rdf:rest rdf:nil
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:grant.7208331 http://pending.schema.org/fundedItem sg:pub.10.1007/s11440-014-0316-1
118 rdf:type schema:MonetaryGrant
119 sg:journal.1136056 schema:issn 1861-1125
120 1861-1133
121 schema:name Acta Geotechnica
122 rdf:type schema:Periodical
123 sg:person.012016401215.33 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
124 schema:familyName Xu
125 schema:givenName Weiya
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016401215.33
127 rdf:type schema:Person
128 sg:person.012371647632.26 schema:affiliation https://www.grid.ac/institutes/grid.4461.7
129 schema:familyName Shao
130 schema:givenName Jianfu
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371647632.26
132 rdf:type schema:Person
133 sg:person.015072263437.00 schema:affiliation https://www.grid.ac/institutes/grid.4461.7
134 schema:familyName Liu
135 schema:givenName Zaobao
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072263437.00
137 rdf:type schema:Person
138 sg:pub.10.1007/bf01243532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051559979
139 https://doi.org/10.1007/bf01243532
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00501-011-0644-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008072625
142 https://doi.org/10.1007/s00501-011-0644-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00521-012-0944-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010393270
145 https://doi.org/10.1007/s00521-012-0944-z
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00521-012-1221-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023245237
148 https://doi.org/10.1007/s00521-012-1221-x
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00603-003-0020-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020487735
151 https://doi.org/10.1007/s00603-003-0020-1
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00603-005-0050-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028753726
154 https://doi.org/10.1007/s00603-005-0050-y
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00603-005-0061-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766498
157 https://doi.org/10.1007/s00603-005-0061-8
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00603-007-0138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024289044
160 https://doi.org/10.1007/s00603-007-0138-7
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00603-011-0169-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010948386
163 https://doi.org/10.1007/s00603-011-0169-y
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00603-012-0239-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051295811
166 https://doi.org/10.1007/s00603-012-0239-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10064-008-0146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043147650
169 https://doi.org/10.1007/s10064-008-0146-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11440-012-0200-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033743930
172 https://doi.org/10.1007/s11440-012-0200-9
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11440-012-0203-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012025234
175 https://doi.org/10.1007/s11440-012-0203-6
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s13042-011-0019-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031892380
178 https://doi.org/10.1007/s13042-011-0019-y
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0013-7952(75)90024-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048374250
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/0148-9062(64)90066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029656293
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0148-9062(79)91451-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025895526
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0148-9062(81)90056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052966494
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0148-9062(90)91001-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1046250288
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/0148-9062(93)90004-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1038009865
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/0148-9062(93)90404-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007950308
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/0148-9062(95)00056-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042661693
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.asoc.2010.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053587613
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.engappai.2003.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002343563
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.enggeo.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017347908
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.enggeo.2007.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040846051
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.enggeo.2007.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030165002
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.enggeo.2008.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032522399
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.eswa.2010.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724349
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.eswa.2012.05.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051818306
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.geomorph.2005.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009003366
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ijrmms.2004.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042815896
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.ijrmms.2004.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007501992
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.ijrmms.2004.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045513749
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.ijrmms.2006.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039569058
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.ijrmms.2009.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010154623
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ijrmms.2010.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052664558
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ijrmms.2012.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048553710
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.ijrmms.2012.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039920632
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.neucom.2010.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021486101
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.neucom.2011.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005670256
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.neucom.2011.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006604319
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.neucom.2012.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029813638
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.patcog.2005.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008777069
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/s0013-7952(00)00081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021771757
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s0013-7952(02)00023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029647282
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s0013-7952(02)00041-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042295838
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s0148-9062(98)00173-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036228053
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s0148-9062(98)00174-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015003613
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s0148-9062(99)00007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532046
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/s1365-1609(01)00039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006423170
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s1674-5264(09)60158-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013528580
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1109/lgrs.2006.873687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358350
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1127/0935-1221/2003/0015-0855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062698177
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1155/2013/512727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035736762
263 rdf:type schema:CreativeWork
264 https://doi.org/10.21236/ad0646610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091886336
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.257065.3 schema:alternateName Hohai University
267 schema:name Geotechnical Research Institute, Hohai University, 210098, Nanjing, China
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.4461.7 schema:alternateName Lille 1 University
270 schema:name Geotechnical Research Institute, Hohai University, 210098, Nanjing, China
271 Laboratory of Mechanics of Lille, University of Lille I, 59655, Villeneuve d’Ascq, France
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...