Segregation between the parietal memory network and the default mode network: effects of spatial smoothing and model order in ICA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Yang Hu, Jijun Wang, Chunbo Li, Yin-Shan Wang, Zhi Yang, Xi-Nian Zuo

ABSTRACT

A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determination in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data. More... »

PAGES

1844-1854

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11434-016-1202-z

DOI

http://dx.doi.org/10.1007/s11434-016-1202-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038982749

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28066681


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Behavioral Science, Laboratory for Human Connectome and Development, Magnetic Resonance Research Center, Institute of Psychology, Chinese Academy of Sciences, 100101, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yang", 
        "id": "sg:person.011524002555.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524002555.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jijun", 
        "id": "sg:person.01023232003.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023232003.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chunbo", 
        "id": "sg:person.01061572642.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061572642.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Behavioral Science, Laboratory for Human Connectome and Development, Magnetic Resonance Research Center, Institute of Psychology, Chinese Academy of Sciences, 100101, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yin-Shan", 
        "id": "sg:person.013714324155.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714324155.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Key Laboratory of Behavioral Science, Laboratory for Human Connectome and Development, Magnetic Resonance Research Center, Institute of Psychology, Chinese Academy of Sciences, 100101, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China", 
            "Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhi", 
        "id": "sg:person.010752453357.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010752453357.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Psychology", 
          "id": "https://www.grid.ac/institutes/grid.454868.3", 
          "name": [
            "Key Laboratory of Behavioral Science, Laboratory for Human Connectome and Development, Magnetic Resonance Research Center, Institute of Psychology, Chinese Academy of Sciences, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuo", 
        "givenName": "Xi-Nian", 
        "id": "sg:person.014072142677.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072142677.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1053-8119(09)71511-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000893594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0158504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002963835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-clinpsy-032511-143049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003563711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003609797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.04.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004134557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005343016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0026703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006274262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00338.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008540929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2015.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009024312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.1048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009094432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2005.1634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010327339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012242380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013899220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015464906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1440.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018307556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.07.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021589261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023357842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023357842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2011.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025027526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2011.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025598003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2011.00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026256466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601417103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029386022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.10.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032936107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-014-0698-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033758049", 
          "https://doi.org/10.1007/s11434-014-0698-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034220108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2014.00106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035150003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhw027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036464678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:vlsi.0000027491.81326.7a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036755677", 
          "https://doi.org/10.1023/b:vlsi.0000027491.81326.7a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2015.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037294899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2000.0716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040307842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awv338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040379136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.06.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040617539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040958519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041602339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041702995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0193(1996)4:1<74::aid-hbm5>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042290453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/schbul/sbt037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042517128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043131751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043338373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046803124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0308627101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051764757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052220614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1998.0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053140737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2003.822821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2011.2181836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-neuro-071013-014030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063176807"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determination in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11434-016-1202-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7186546", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6985749", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5008611", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051679", 
        "issn": [
          "2095-9273", 
          "2095-9281"
        ], 
        "name": "Science Bulletin", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "24", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Segregation between the parietal memory network and the default mode network: effects of spatial smoothing and model order in ICA", 
    "pagination": "1844-1854", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9b14b4076c3b9d03f08a42718717220af8018aa92fab8bb472243ddc53d6ea6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28066681"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101655530"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11434-016-1202-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038982749"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11434-016-1202-z", 
      "https://app.dimensions.ai/details/publication/pub.1038982749"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11434-016-1202-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1202-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1202-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1202-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1202-z'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11434-016-1202-z schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N9e720abb5ff14875a7e8e3c9dc452f91
4 schema:citation sg:pub.10.1007/s11434-014-0698-3
5 sg:pub.10.1023/b:vlsi.0000027491.81326.7a
6 https://doi.org/10.1002/(sici)1097-0193(1996)4:1<74::aid-hbm5>3.0.co;2-m
7 https://doi.org/10.1002/hbm.1048
8 https://doi.org/10.1002/hbm.20432
9 https://doi.org/10.1002/hbm.20434
10 https://doi.org/10.1002/hbm.20813
11 https://doi.org/10.1002/hbm.20929
12 https://doi.org/10.1002/hbm.22264
13 https://doi.org/10.1006/nimg.1998.0395
14 https://doi.org/10.1006/nimg.2000.0716
15 https://doi.org/10.1016/j.jneumeth.2015.03.019
16 https://doi.org/10.1016/j.neurobiolaging.2011.07.003
17 https://doi.org/10.1016/j.neuroimage.2004.03.027
18 https://doi.org/10.1016/j.neuroimage.2004.10.042
19 https://doi.org/10.1016/j.neuroimage.2007.11.019
20 https://doi.org/10.1016/j.neuroimage.2009.10.080
21 https://doi.org/10.1016/j.neuroimage.2010.04.268
22 https://doi.org/10.1016/j.neuroimage.2010.09.025
23 https://doi.org/10.1016/j.neuroimage.2011.07.044
24 https://doi.org/10.1016/j.neuroimage.2012.06.060
25 https://doi.org/10.1016/j.neuroimage.2012.11.008
26 https://doi.org/10.1016/j.neuroimage.2013.04.013
27 https://doi.org/10.1016/j.neuroimage.2013.05.039
28 https://doi.org/10.1016/j.neuroimage.2013.10.039
29 https://doi.org/10.1016/j.neuron.2011.09.006
30 https://doi.org/10.1016/j.tics.2011.08.003
31 https://doi.org/10.1016/j.tics.2015.07.004
32 https://doi.org/10.1016/s1053-8119(09)71511-3
33 https://doi.org/10.1073/pnas.0308627101
34 https://doi.org/10.1073/pnas.0601417103
35 https://doi.org/10.1093/brain/awv338
36 https://doi.org/10.1093/cercor/bhw027
37 https://doi.org/10.1093/schbul/sbt037
38 https://doi.org/10.1098/rstb.2005.1634
39 https://doi.org/10.1109/tmi.2003.822821
40 https://doi.org/10.1109/tsp.2011.2181836
41 https://doi.org/10.1146/annurev-clinpsy-032511-143049
42 https://doi.org/10.1146/annurev-neuro-071013-014030
43 https://doi.org/10.1152/jn.00338.2011
44 https://doi.org/10.1196/annals.1440.011
45 https://doi.org/10.1371/journal.pone.0026703
46 https://doi.org/10.1371/journal.pone.0158504
47 https://doi.org/10.3389/fnsys.2011.00002
48 https://doi.org/10.3389/fnsys.2014.00106
49 schema:datePublished 2016-12
50 schema:datePublishedReg 2016-12-01
51 schema:description A brain network consisting of two key parietal nodes, the precuneus and the posterior cingulate cortex, has emerged from recent fMRI studies. Though it is anatomically adjacent to and spatially overlaps with the default mode network (DMN), its function has been associated with memory processing, and it has been referred to as the parietal memory network (PMN). Independent component analysis (ICA) is the most common data-driven method used to extract PMN and DMN simultaneously. However, the effects of data preprocessing and parameter determination in ICA on PMN-DMN segregation are completely unknown. Here, we employ three typical algorithms of group ICA to assess how spatial smoothing and model order influence the degree of PMN-DMN segregation. Our findings indicate that PMN and DMN can only be stably separated using a combination of low-level spatial smoothing and high model order across the three ICA algorithms. We thus argue for more considerations on parametric settings for interpreting DMN data.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N22db48e6a7f64504b1e87f6c4db483d7
56 N46fcc89f7bdc4c8e96272640faf72cf8
57 sg:journal.1051679
58 schema:name Segregation between the parietal memory network and the default mode network: effects of spatial smoothing and model order in ICA
59 schema:pagination 1844-1854
60 schema:productId N4474cffa265a4684a04839df5e8a0a61
61 N8712b6fbfae746b4bdfd917adb4c524d
62 N889dedca19314e7baa4f9358aad14f0d
63 Nb9114cad5e354bb69498d794134f0c57
64 Nca6fac2659844f7ea25fdc7c22b73112
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038982749
66 https://doi.org/10.1007/s11434-016-1202-z
67 schema:sdDatePublished 2019-04-11T12:36
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nb98e34c0006a46098cb4e3d302a385e5
70 schema:url https://link.springer.com/10.1007%2Fs11434-016-1202-z
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N06353a8dab404ee598fb50b8e459759c rdf:first sg:person.01023232003.97
75 rdf:rest N91608f1cffa24424911309797ce7165c
76 N22db48e6a7f64504b1e87f6c4db483d7 schema:volumeNumber 61
77 rdf:type schema:PublicationVolume
78 N4474cffa265a4684a04839df5e8a0a61 schema:name readcube_id
79 schema:value b9b14b4076c3b9d03f08a42718717220af8018aa92fab8bb472243ddc53d6ea6
80 rdf:type schema:PropertyValue
81 N46fcc89f7bdc4c8e96272640faf72cf8 schema:issueNumber 24
82 rdf:type schema:PublicationIssue
83 N8712b6fbfae746b4bdfd917adb4c524d schema:name pubmed_id
84 schema:value 28066681
85 rdf:type schema:PropertyValue
86 N889dedca19314e7baa4f9358aad14f0d schema:name nlm_unique_id
87 schema:value 101655530
88 rdf:type schema:PropertyValue
89 N91608f1cffa24424911309797ce7165c rdf:first sg:person.01061572642.40
90 rdf:rest Ne4e6c704b5e640189eb926ec59580b0a
91 N9e720abb5ff14875a7e8e3c9dc452f91 rdf:first sg:person.011524002555.24
92 rdf:rest N06353a8dab404ee598fb50b8e459759c
93 Nb670fe8c41294c9cba98b997ec45d2c5 rdf:first sg:person.010752453357.52
94 rdf:rest Nc847ff2356924a09b38c3deb8cb6e782
95 Nb9114cad5e354bb69498d794134f0c57 schema:name dimensions_id
96 schema:value pub.1038982749
97 rdf:type schema:PropertyValue
98 Nb98e34c0006a46098cb4e3d302a385e5 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nc847ff2356924a09b38c3deb8cb6e782 rdf:first sg:person.014072142677.02
101 rdf:rest rdf:nil
102 Nca6fac2659844f7ea25fdc7c22b73112 schema:name doi
103 schema:value 10.1007/s11434-016-1202-z
104 rdf:type schema:PropertyValue
105 Ne4e6c704b5e640189eb926ec59580b0a rdf:first sg:person.013714324155.84
106 rdf:rest Nb670fe8c41294c9cba98b997ec45d2c5
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
111 schema:name Geomatic Engineering
112 rdf:type schema:DefinedTerm
113 sg:grant.5008611 http://pending.schema.org/fundedItem sg:pub.10.1007/s11434-016-1202-z
114 rdf:type schema:MonetaryGrant
115 sg:grant.6985749 http://pending.schema.org/fundedItem sg:pub.10.1007/s11434-016-1202-z
116 rdf:type schema:MonetaryGrant
117 sg:grant.7186546 http://pending.schema.org/fundedItem sg:pub.10.1007/s11434-016-1202-z
118 rdf:type schema:MonetaryGrant
119 sg:journal.1051679 schema:issn 2095-9273
120 2095-9281
121 schema:name Science Bulletin
122 rdf:type schema:Periodical
123 sg:person.01023232003.97 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
124 schema:familyName Wang
125 schema:givenName Jijun
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023232003.97
127 rdf:type schema:Person
128 sg:person.01061572642.40 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
129 schema:familyName Li
130 schema:givenName Chunbo
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061572642.40
132 rdf:type schema:Person
133 sg:person.010752453357.52 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
134 schema:familyName Yang
135 schema:givenName Zhi
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010752453357.52
137 rdf:type schema:Person
138 sg:person.011524002555.24 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
139 schema:familyName Hu
140 schema:givenName Yang
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524002555.24
142 rdf:type schema:Person
143 sg:person.013714324155.84 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
144 schema:familyName Wang
145 schema:givenName Yin-Shan
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714324155.84
147 rdf:type schema:Person
148 sg:person.014072142677.02 schema:affiliation https://www.grid.ac/institutes/grid.454868.3
149 schema:familyName Zuo
150 schema:givenName Xi-Nian
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072142677.02
152 rdf:type schema:Person
153 sg:pub.10.1007/s11434-014-0698-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033758049
154 https://doi.org/10.1007/s11434-014-0698-3
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/b:vlsi.0000027491.81326.7a schema:sameAs https://app.dimensions.ai/details/publication/pub.1036755677
157 https://doi.org/10.1023/b:vlsi.0000027491.81326.7a
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/(sici)1097-0193(1996)4:1<74::aid-hbm5>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1042290453
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/hbm.1048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009094432
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/hbm.20432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005343016
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/hbm.20434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040958519
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/hbm.20813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041702995
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/hbm.20929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023357842
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/hbm.22264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034220108
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/nimg.1998.0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053140737
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1006/nimg.2000.0716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040307842
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jneumeth.2015.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037294899
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.neurobiolaging.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025027526
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.neuroimage.2004.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015464906
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neuroimage.2004.10.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032936107
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.neuroimage.2007.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043131751
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.neuroimage.2009.10.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003609797
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.neuroimage.2010.04.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004134557
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.neuroimage.2010.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046803124
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.neuroimage.2011.07.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021589261
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.neuroimage.2012.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040617539
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.neuroimage.2012.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013899220
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.neuroimage.2013.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012242380
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.neuroimage.2013.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041602339
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.neuroimage.2013.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043338373
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.neuron.2011.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052220614
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.tics.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025598003
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.tics.2015.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009024312
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s1053-8119(09)71511-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000893594
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.0308627101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051764757
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.0601417103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029386022
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/brain/awv338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040379136
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/cercor/bhw027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464678
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/schbul/sbt037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042517128
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1098/rstb.2005.1634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010327339
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tmi.2003.822821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694516
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tsp.2011.2181836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803103
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1146/annurev-clinpsy-032511-143049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003563711
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1146/annurev-neuro-071013-014030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063176807
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1152/jn.00338.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008540929
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1196/annals.1440.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018307556
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1371/journal.pone.0026703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006274262
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1371/journal.pone.0158504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002963835
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3389/fnsys.2011.00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026256466
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3389/fnsys.2014.00106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035150003
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
246 schema:name Key Laboratory of Behavioral Science, Laboratory for Human Connectome and Development, Magnetic Resonance Research Center, Institute of Psychology, Chinese Academy of Sciences, 100101, Beijing, China
247 Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
248 University of Chinese Academy of Sciences, 100049, Beijing, China
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
251 schema:name Key Laboratory of Behavioral Science, Laboratory for Human Connectome and Development, Magnetic Resonance Research Center, Institute of Psychology, Chinese Academy of Sciences, 100101, Beijing, China
252 University of Chinese Academy of Sciences, 100049, Beijing, China
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.454868.3 schema:alternateName Institute of Psychology
255 schema:name Key Laboratory of Behavioral Science, Laboratory for Human Connectome and Development, Magnetic Resonance Research Center, Institute of Psychology, Chinese Academy of Sciences, 100101, Beijing, China
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...