In situ carrier tuning in high temperature superconductor Bi2Sr2CaCu2O8+δ by potassium deposition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Yuxiao Zhang, Cheng Hu, Yong Hu, Lin Zhao, Ying Ding, Xuan Sun, Aiji Liang, Yan Zhang, Shaolong He, Defa Liu, Li Yu, Guodong Liu, Xiaoli Dong, Genda Gu, Chuangtian Chen, Zuyan Xu, Xingjiang Zhou

ABSTRACT

We report a successful tuning of the hole doping level over a wide range in high temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212) through successive in situ potassium (K) deposition. By taking high resolution angle-resolved photoemission measurements on the Fermi surface and band structure of an overdoped Bi2212 (Tc=76 K) at different stages of K deposition, we found that the area of the hole-like Fermi surface around the Brillouin zone corner (π,π) shrinks with increasing K deposition. This indicates a continuous hole concentration change from initial ∼0.26 to eventual 0.09 after extensive K deposition, a net doping level change of 0.17 that makes it possible to bring Bi2212 from being originally overdoped, to optimally-doped, and eventually becoming heavily underdoped. The electronic behaviors with K deposition are consistent with those of Bi2212 samples with different hole doping levels. These results demonstrate that K deposition is an effective way of in situ controlling the hole concentration in Bi2212. This work opens a good way of studying the doping evolution of electronic structure and establishing the electronic phase diagram in Bi2212 that can be extended to other cuprate superconductors. More... »

PAGES

1037-1043

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11434-016-1106-y

DOI

http://dx.doi.org/10.1007/s11434-016-1106-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048114622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuxiao", 
        "id": "sg:person.01034455007.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034455007.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Cheng", 
        "id": "sg:person.013006026721.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006026721.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yong", 
        "id": "sg:person.01357236221.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357236221.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Lin", 
        "id": "sg:person.01133532161.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133532161.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Ying", 
        "id": "sg:person.010261053267.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261053267.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Xuan", 
        "id": "sg:person.014064023775.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064023775.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Aiji", 
        "id": "sg:person.01312232661.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312232661.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Shaolong", 
        "id": "sg:person.01360346061.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360346061.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Defa", 
        "id": "sg:person.01025576507.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025576507.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Li", 
        "id": "sg:person.016025670315.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025670315.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Guodong", 
        "id": "sg:person.014344415675.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344415675.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Xiaoli", 
        "id": "sg:person.01247760561.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247760561.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, 11973, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Genda", 
        "id": "sg:person.01002164005.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002164005.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chuangtian", 
        "id": "sg:person.012640342114.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640342114.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Institute of Physics and Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.458502.e", 
          "name": [
            "Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Zuyan", 
        "id": "sg:person.07524273227.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524273227.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xingjiang", 
        "id": "sg:person.01032130641.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032130641.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-18914-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000315266", 
          "https://doi.org/10.1007/978-3-642-18914-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18914-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000315266", 
          "https://doi.org/10.1007/978-3-642-18914-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.180505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000483443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.180505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000483443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.054519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004424327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.054519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004424327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.054519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004424327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r9678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r9678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006885289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006885289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-68734-6_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012756106", 
          "https://doi.org/10.1007/978-0-387-68734-6_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2007.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014109585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1209471109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021363903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35087518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025272248", 
          "https://doi.org/10.1038/35087518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35087518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025272248", 
          "https://doi.org/10.1038/35087518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.094515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025854074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.094515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025854074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028240875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028240875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029017021", 
          "https://doi.org/10.1038/nphys998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1101008108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030792641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-016-1037-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032332931", 
          "https://doi.org/10.1007/s11434-016-1037-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-016-1087-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032423369", 
          "https://doi.org/10.1007/s11434-016-1087-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2835901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033942881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381635", 
          "https://doi.org/10.1007/bf01303701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381635", 
          "https://doi.org/10.1007/bf01303701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037436912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037436912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/423398a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038404515", 
          "https://doi.org/10.1038/423398a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/423398a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038404515", 
          "https://doi.org/10.1038/423398a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382051a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038829240", 
          "https://doi.org/10.1038/382051a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039326043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039326043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040743181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040743181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-015-0776-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044029885", 
          "https://doi.org/10.1007/s11434-015-0776-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.107002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.107002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044090995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045026742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045026742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045038063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045038063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047516909", 
          "https://doi.org/10.1038/nphys1375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.177007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.177007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1501329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062440006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1103627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5273.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.289.5477.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062570267"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "We report a successful tuning of the hole doping level over a wide range in high temperature superconductor Bi2Sr2CaCu2O8+\u03b4 (Bi2212) through successive in situ potassium (K) deposition. By taking high resolution angle-resolved photoemission measurements on the Fermi surface and band structure of an overdoped Bi2212 (Tc=76 K) at different stages of K deposition, we found that the area of the hole-like Fermi surface around the Brillouin zone corner (\u03c0,\u03c0) shrinks with increasing K deposition. This indicates a continuous hole concentration change from initial \u223c0.26 to eventual 0.09 after extensive K deposition, a net doping level change of 0.17 that makes it possible to bring Bi2212 from being originally overdoped, to optimally-doped, and eventually becoming heavily underdoped. The electronic behaviors with K deposition are consistent with those of Bi2212 samples with different hole doping levels. These results demonstrate that K deposition is an effective way of in situ controlling the hole concentration in Bi2212. This work opens a good way of studying the doping evolution of electronic structure and establishing the electronic phase diagram in Bi2212 that can be extended to other cuprate superconductors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11434-016-1106-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7197206", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051679", 
        "issn": [
          "2095-9273", 
          "2095-9281"
        ], 
        "name": "Science Bulletin", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "13", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "In situ carrier tuning in high temperature superconductor Bi2Sr2CaCu2O8+\u03b4 by potassium deposition", 
    "pagination": "1037-1043", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e535adaa9da7ef499d1ae29b5fbdb03438458231b3b576c7256aaffe3e10c4de"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11434-016-1106-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048114622"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11434-016-1106-y", 
      "https://app.dimensions.ai/details/publication/pub.1048114622"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11434-016-1106-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1106-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1106-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1106-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11434-016-1106-y'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11434-016-1106-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nde28cc29325d4d9896c1d1db3fd99acc
4 schema:citation sg:pub.10.1007/978-0-387-68734-6_3
5 sg:pub.10.1007/978-3-642-18914-2_5
6 sg:pub.10.1007/bf01303701
7 sg:pub.10.1007/s11434-015-0776-1
8 sg:pub.10.1007/s11434-016-1037-7
9 sg:pub.10.1007/s11434-016-1087-x
10 sg:pub.10.1038/35087518
11 sg:pub.10.1038/382051a0
12 sg:pub.10.1038/423398a
13 sg:pub.10.1038/nphys1375
14 sg:pub.10.1038/nphys998
15 https://doi.org/10.1016/j.jcrysgro.2007.09.028
16 https://doi.org/10.1063/1.2835901
17 https://doi.org/10.1073/pnas.1101008108
18 https://doi.org/10.1073/pnas.1209471109
19 https://doi.org/10.1103/physrevb.54.r9678
20 https://doi.org/10.1103/physrevb.64.180505
21 https://doi.org/10.1103/physrevb.72.054519
22 https://doi.org/10.1103/physrevb.77.094515
23 https://doi.org/10.1103/physrevlett.100.107002
24 https://doi.org/10.1103/physrevlett.70.1553
25 https://doi.org/10.1103/physrevlett.72.2757
26 https://doi.org/10.1103/physrevlett.79.3467
27 https://doi.org/10.1103/physrevlett.84.4453
28 https://doi.org/10.1103/physrevlett.85.2581
29 https://doi.org/10.1103/physrevlett.86.1070
30 https://doi.org/10.1103/physrevlett.86.5550
31 https://doi.org/10.1103/physrevlett.87.177007
32 https://doi.org/10.1103/physrevlett.92.187001
33 https://doi.org/10.1103/revmodphys.75.473
34 https://doi.org/10.1103/revmodphys.78.17
35 https://doi.org/10.1103/revmodphys.79.353
36 https://doi.org/10.1126/sciadv.1501329
37 https://doi.org/10.1126/science.1103627
38 https://doi.org/10.1126/science.273.5273.325
39 https://doi.org/10.1126/science.289.5477.277
40 schema:datePublished 2016-07
41 schema:datePublishedReg 2016-07-01
42 schema:description We report a successful tuning of the hole doping level over a wide range in high temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212) through successive in situ potassium (K) deposition. By taking high resolution angle-resolved photoemission measurements on the Fermi surface and band structure of an overdoped Bi2212 (Tc=76 K) at different stages of K deposition, we found that the area of the hole-like Fermi surface around the Brillouin zone corner (π,π) shrinks with increasing K deposition. This indicates a continuous hole concentration change from initial ∼0.26 to eventual 0.09 after extensive K deposition, a net doping level change of 0.17 that makes it possible to bring Bi2212 from being originally overdoped, to optimally-doped, and eventually becoming heavily underdoped. The electronic behaviors with K deposition are consistent with those of Bi2212 samples with different hole doping levels. These results demonstrate that K deposition is an effective way of in situ controlling the hole concentration in Bi2212. This work opens a good way of studying the doping evolution of electronic structure and establishing the electronic phase diagram in Bi2212 that can be extended to other cuprate superconductors.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N37ba67531f5f4b8e99fe419c46121458
47 N79628517e5b847bf848f6bfddae91b2d
48 sg:journal.1051679
49 schema:name In situ carrier tuning in high temperature superconductor Bi2Sr2CaCu2O8+δ by potassium deposition
50 schema:pagination 1037-1043
51 schema:productId N0805e659e649478f85a3a0ab900162f4
52 Na9e4187dd5fa49c1bde93153552e7fcb
53 Nc6b8d3c631584c4593fcaf2ee17dbb31
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048114622
55 https://doi.org/10.1007/s11434-016-1106-y
56 schema:sdDatePublished 2019-04-10T15:54
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N92ed857fd32b40ecafbc38d37b8d81a4
59 schema:url http://link.springer.com/10.1007%2Fs11434-016-1106-y
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N00032a1359c74b59b19e07f49ad39b2d schema:affiliation https://www.grid.ac/institutes/grid.458438.6
64 schema:familyName Zhang
65 schema:givenName Yan
66 rdf:type schema:Person
67 N0446c1cffc5b4574b0154dc2ed1b9b4e rdf:first sg:person.07524273227.65
68 rdf:rest N2535a9e1c84e48e7b04d5e4fc89bce39
69 N0805e659e649478f85a3a0ab900162f4 schema:name readcube_id
70 schema:value e535adaa9da7ef499d1ae29b5fbdb03438458231b3b576c7256aaffe3e10c4de
71 rdf:type schema:PropertyValue
72 N0b21fc24b9894fb59fedbdc6d1adceaf rdf:first sg:person.014064023775.16
73 rdf:rest N5c550bc54ee34c0fbcfe59cc3d22b8d6
74 N2495e7f0cbcd4c61be422029a4184514 rdf:first sg:person.01357236221.92
75 rdf:rest N8ca8a3bd8e0a483b82e10c797ac0e72e
76 N2535a9e1c84e48e7b04d5e4fc89bce39 rdf:first sg:person.01032130641.12
77 rdf:rest rdf:nil
78 N37ba67531f5f4b8e99fe419c46121458 schema:issueNumber 13
79 rdf:type schema:PublicationIssue
80 N39c66e8922dd4f13bca81072974e6a84 rdf:first sg:person.010261053267.22
81 rdf:rest N0b21fc24b9894fb59fedbdc6d1adceaf
82 N461ec8567f6c412796dea149a64eec65 rdf:first sg:person.013006026721.33
83 rdf:rest N2495e7f0cbcd4c61be422029a4184514
84 N5c550bc54ee34c0fbcfe59cc3d22b8d6 rdf:first sg:person.01312232661.82
85 rdf:rest N67d9f78a4d4748fea2c9abab7041b0ae
86 N67d9f78a4d4748fea2c9abab7041b0ae rdf:first N00032a1359c74b59b19e07f49ad39b2d
87 rdf:rest N77310e6f52c64c3c95991ca648d120ea
88 N7328b334f7a94370a02f0882dbcbab72 rdf:first sg:person.012640342114.12
89 rdf:rest N0446c1cffc5b4574b0154dc2ed1b9b4e
90 N77310e6f52c64c3c95991ca648d120ea rdf:first sg:person.01360346061.96
91 rdf:rest N79c601aa71fa42f1b5d712ad7f945bb0
92 N79628517e5b847bf848f6bfddae91b2d schema:volumeNumber 61
93 rdf:type schema:PublicationVolume
94 N79c601aa71fa42f1b5d712ad7f945bb0 rdf:first sg:person.01025576507.29
95 rdf:rest N7b20f75dede2496aad2ea1ae2916e1ae
96 N7b20f75dede2496aad2ea1ae2916e1ae rdf:first sg:person.016025670315.51
97 rdf:rest Nbe187eba40a641b7a86cf0376744f463
98 N870931b91abc4586a8b168183b6d152b rdf:first sg:person.01247760561.57
99 rdf:rest Ne4f9890c5ce8480591df4bb8022eb608
100 N8ca8a3bd8e0a483b82e10c797ac0e72e rdf:first sg:person.01133532161.35
101 rdf:rest N39c66e8922dd4f13bca81072974e6a84
102 N92ed857fd32b40ecafbc38d37b8d81a4 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Na9e4187dd5fa49c1bde93153552e7fcb schema:name doi
105 schema:value 10.1007/s11434-016-1106-y
106 rdf:type schema:PropertyValue
107 Nbe187eba40a641b7a86cf0376744f463 rdf:first sg:person.014344415675.24
108 rdf:rest N870931b91abc4586a8b168183b6d152b
109 Nc6b8d3c631584c4593fcaf2ee17dbb31 schema:name dimensions_id
110 schema:value pub.1048114622
111 rdf:type schema:PropertyValue
112 Nde28cc29325d4d9896c1d1db3fd99acc rdf:first sg:person.01034455007.75
113 rdf:rest N461ec8567f6c412796dea149a64eec65
114 Ne4f9890c5ce8480591df4bb8022eb608 rdf:first sg:person.01002164005.87
115 rdf:rest N7328b334f7a94370a02f0882dbcbab72
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:grant.7197206 http://pending.schema.org/fundedItem sg:pub.10.1007/s11434-016-1106-y
123 rdf:type schema:MonetaryGrant
124 sg:journal.1051679 schema:issn 2095-9273
125 2095-9281
126 schema:name Science Bulletin
127 rdf:type schema:Periodical
128 sg:person.01002164005.87 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
129 schema:familyName Gu
130 schema:givenName Genda
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002164005.87
132 rdf:type schema:Person
133 sg:person.01025576507.29 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
134 schema:familyName Liu
135 schema:givenName Defa
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025576507.29
137 rdf:type schema:Person
138 sg:person.010261053267.22 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
139 schema:familyName Ding
140 schema:givenName Ying
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261053267.22
142 rdf:type schema:Person
143 sg:person.01032130641.12 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
144 schema:familyName Zhou
145 schema:givenName Xingjiang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032130641.12
147 rdf:type schema:Person
148 sg:person.01034455007.75 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
149 schema:familyName Zhang
150 schema:givenName Yuxiao
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034455007.75
152 rdf:type schema:Person
153 sg:person.01133532161.35 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
154 schema:familyName Zhao
155 schema:givenName Lin
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133532161.35
157 rdf:type schema:Person
158 sg:person.01247760561.57 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
159 schema:familyName Dong
160 schema:givenName Xiaoli
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247760561.57
162 rdf:type schema:Person
163 sg:person.012640342114.12 schema:affiliation https://www.grid.ac/institutes/grid.458502.e
164 schema:familyName Chen
165 schema:givenName Chuangtian
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640342114.12
167 rdf:type schema:Person
168 sg:person.013006026721.33 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
169 schema:familyName Hu
170 schema:givenName Cheng
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006026721.33
172 rdf:type schema:Person
173 sg:person.01312232661.82 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
174 schema:familyName Liang
175 schema:givenName Aiji
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312232661.82
177 rdf:type schema:Person
178 sg:person.01357236221.92 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
179 schema:familyName Hu
180 schema:givenName Yong
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357236221.92
182 rdf:type schema:Person
183 sg:person.01360346061.96 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
184 schema:familyName He
185 schema:givenName Shaolong
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360346061.96
187 rdf:type schema:Person
188 sg:person.014064023775.16 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
189 schema:familyName Sun
190 schema:givenName Xuan
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064023775.16
192 rdf:type schema:Person
193 sg:person.014344415675.24 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
194 schema:familyName Liu
195 schema:givenName Guodong
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344415675.24
197 rdf:type schema:Person
198 sg:person.016025670315.51 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
199 schema:familyName Yu
200 schema:givenName Li
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025670315.51
202 rdf:type schema:Person
203 sg:person.07524273227.65 schema:affiliation https://www.grid.ac/institutes/grid.458502.e
204 schema:familyName Xu
205 schema:givenName Zuyan
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524273227.65
207 rdf:type schema:Person
208 sg:pub.10.1007/978-0-387-68734-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012756106
209 https://doi.org/10.1007/978-0-387-68734-6_3
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/978-3-642-18914-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000315266
212 https://doi.org/10.1007/978-3-642-18914-2_5
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/bf01303701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036381635
215 https://doi.org/10.1007/bf01303701
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s11434-015-0776-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044029885
218 https://doi.org/10.1007/s11434-015-0776-1
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s11434-016-1037-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032332931
221 https://doi.org/10.1007/s11434-016-1037-7
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s11434-016-1087-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032423369
224 https://doi.org/10.1007/s11434-016-1087-x
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/35087518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025272248
227 https://doi.org/10.1038/35087518
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/382051a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038829240
230 https://doi.org/10.1038/382051a0
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/423398a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038404515
233 https://doi.org/10.1038/423398a
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nphys1375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047516909
236 https://doi.org/10.1038/nphys1375
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nphys998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029017021
239 https://doi.org/10.1038/nphys998
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.jcrysgro.2007.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014109585
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1063/1.2835901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033942881
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1073/pnas.1101008108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030792641
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1073/pnas.1209471109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021363903
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1103/physrevb.54.r9678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006465235
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1103/physrevb.64.180505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000483443
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1103/physrevb.72.054519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004424327
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1103/physrevb.77.094515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025854074
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1103/physrevlett.100.107002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044090995
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1103/physrevlett.70.1553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806463
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1103/physrevlett.72.2757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808904
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1103/physrevlett.79.3467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816121
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1103/physrevlett.84.4453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040743181
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1103/physrevlett.85.2581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028240875
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1103/physrevlett.86.1070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006885289
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1103/physrevlett.86.5550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039326043
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1103/physrevlett.87.177007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052930376
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1103/physrevlett.92.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037436912
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1103/revmodphys.75.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045026742
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1103/revmodphys.78.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839611
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1103/revmodphys.79.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045038063
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1126/sciadv.1501329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062440006
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1126/science.1103627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451075
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1126/science.273.5273.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553642
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1126/science.289.5477.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570267
290 rdf:type schema:CreativeWork
291 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
292 schema:name Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Department, 11973, New York, NY, USA
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.458438.6 schema:alternateName Institute of Physics
295 schema:name National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.458502.e schema:alternateName Technical Institute of Physics and Chemistry
298 schema:name Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
299 rdf:type schema:Organization
300 https://www.grid.ac/institutes/grid.495569.2 schema:alternateName Collaborative Innovation Center of Quantum Matter
301 schema:name Collaborative Innovation Center of Quantum Matter, 100871, Beijing, China
302 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...