Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-07

AUTHORS

Zuocheng Zhang, Yi-Hua Wang, Qi Song, Chang Liu, Rui Peng, K. A. Moler, Donglai Feng, Yayu Wang

ABSTRACT

We report the Meissner effect studies on an FeSe thin film grown on Nb-doped SrTiO3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that FeSe thin film grown on Nb-doped SrTiO3 substrate has an onset TC ~ 65 K, which is the highest among all iron-based superconductors discovered so far. More... »

PAGES

1301-1304

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11434-015-0842-8

DOI

http://dx.doi.org/10.1007/s11434-015-0842-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022211354


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zuocheng", 
        "id": "sg:person.01150766232.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150766232.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China", 
            "Stanford Institute for Materials and Energy Science, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yi-Hua", 
        "id": "sg:person.01371256171.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371256171.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Qi", 
        "id": "sg:person.012444476521.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012444476521.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chang", 
        "id": "sg:person.01331534615.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331534615.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Rui", 
        "id": "sg:person.016457262703.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016457262703.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Institute for Materials and Energy Science, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moler", 
        "givenName": "K. A.", 
        "id": "sg:person.01024351445.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024351445.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China", 
            "Collaborative Innovation Center of Advanced Microstructures, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Donglai", 
        "id": "sg:person.01200600261.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200600261.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China", 
            "Collaborative Innovation Center of Quantum Matter, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yayu", 
        "id": "sg:person.0635640376.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0256-307x/29/3/037402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005911355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006127136", 
          "https://doi.org/10.1038/nmat4153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.224518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006629945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.224518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006629945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0807325105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007803376", 
          "https://doi.org/10.1038/ncomms1273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/14/142203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007935382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/14/142203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007935382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/31/1/017401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012254453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/83/67006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026081350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.014501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026144795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.014501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026144795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031043737", 
          "https://doi.org/10.1038/ncomms1946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552947", 
          "https://doi.org/10.1038/nmat3648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047734086", 
          "https://doi.org/10.1038/nmat3654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052482923", 
          "https://doi.org/10.1038/nature13894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1141991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057669719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/25/7/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059055795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-1056/22/8/086801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059153168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.020503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.020503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.134508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.134508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.220503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.220503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1202226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464469"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07", 
    "datePublishedReg": "2015-07-01", 
    "description": "We report the Meissner effect studies on an FeSe thin film grown on Nb-doped SrTiO3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that FeSe thin film grown on Nb-doped SrTiO3 substrate has an onset TC ~ 65 K, which is the highest among all iron-based superconductors discovered so far.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11434-015-0842-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051679", 
        "issn": [
          "2095-9273", 
          "2095-9281"
        ], 
        "name": "Science Bulletin", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "14", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate", 
    "pagination": "1301-1304", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "69d2080b2f3bf459ebd254554f391f0a0ed422337976e8a53e0f871bd7fc367d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11434-015-0842-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022211354"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11434-015-0842-8", 
      "https://app.dimensions.ai/details/publication/pub.1022211354"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11434-015-0842-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11434-015-0842-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11434-015-0842-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11434-015-0842-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11434-015-0842-8'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11434-015-0842-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nef262cdeaa574d82b6f03f1288b16ecb
4 schema:citation sg:pub.10.1038/nature13894
5 sg:pub.10.1038/ncomms1273
6 sg:pub.10.1038/ncomms1946
7 sg:pub.10.1038/nmat3648
8 sg:pub.10.1038/nmat3654
9 sg:pub.10.1038/nmat4153
10 https://doi.org/10.1063/1.1141991
11 https://doi.org/10.1073/pnas.0807325105
12 https://doi.org/10.1088/0256-307x/25/7/015
13 https://doi.org/10.1088/0256-307x/29/3/037402
14 https://doi.org/10.1088/0256-307x/31/1/017401
15 https://doi.org/10.1088/0953-8984/21/14/142203
16 https://doi.org/10.1088/1674-1056/22/8/086801
17 https://doi.org/10.1103/physrevb.84.020503
18 https://doi.org/10.1103/physrevb.85.224518
19 https://doi.org/10.1103/physrevb.86.134508
20 https://doi.org/10.1103/physrevb.87.220503
21 https://doi.org/10.1103/physrevb.89.014501
22 https://doi.org/10.1126/science.1202226
23 https://doi.org/10.1209/0295-5075/83/67006
24 schema:datePublished 2015-07
25 schema:datePublishedReg 2015-07-01
26 schema:description We report the Meissner effect studies on an FeSe thin film grown on Nb-doped SrTiO3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that FeSe thin film grown on Nb-doped SrTiO3 substrate has an onset TC ~ 65 K, which is the highest among all iron-based superconductors discovered so far.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N83d1ae1b06e1480185aefa0fcb877066
31 Ne463dc9293814fc98a2fc656402902da
32 sg:journal.1051679
33 schema:name Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate
34 schema:pagination 1301-1304
35 schema:productId N9d0abc4284694a5c8c3cf9c2a02d40fc
36 Na52c17a2d5dd4b9d8729582d352caca4
37 Ned8006d30a614301b71b5b2005117662
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022211354
39 https://doi.org/10.1007/s11434-015-0842-8
40 schema:sdDatePublished 2019-04-10T18:24
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nefacda6407ba480aa9742ac750c9c05f
43 schema:url http://link.springer.com/10.1007%2Fs11434-015-0842-8
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N187c1603841d4031b7500eb21df48a7e rdf:first sg:person.01331534615.03
48 rdf:rest N2f04b3bd57ff421ea5e64064f881db50
49 N2f04b3bd57ff421ea5e64064f881db50 rdf:first sg:person.016457262703.94
50 rdf:rest Nea2dbebed3b5451ca797d7f7ad868e2d
51 N484c72eda2d84a21ac037d82c12183a6 rdf:first sg:person.012444476521.99
52 rdf:rest N187c1603841d4031b7500eb21df48a7e
53 N5f566550a03a49b09148e514a6656f8b rdf:first sg:person.01371256171.38
54 rdf:rest N484c72eda2d84a21ac037d82c12183a6
55 N83d1ae1b06e1480185aefa0fcb877066 schema:volumeNumber 60
56 rdf:type schema:PublicationVolume
57 N8a1746c42b1c4e239d17c7595a957b48 rdf:first sg:person.0635640376.17
58 rdf:rest rdf:nil
59 N9d0abc4284694a5c8c3cf9c2a02d40fc schema:name doi
60 schema:value 10.1007/s11434-015-0842-8
61 rdf:type schema:PropertyValue
62 Na52c17a2d5dd4b9d8729582d352caca4 schema:name readcube_id
63 schema:value 69d2080b2f3bf459ebd254554f391f0a0ed422337976e8a53e0f871bd7fc367d
64 rdf:type schema:PropertyValue
65 Nc5974882c5304ef8985d3efde0995dc1 rdf:first sg:person.01200600261.85
66 rdf:rest N8a1746c42b1c4e239d17c7595a957b48
67 Ne463dc9293814fc98a2fc656402902da schema:issueNumber 14
68 rdf:type schema:PublicationIssue
69 Nea2dbebed3b5451ca797d7f7ad868e2d rdf:first sg:person.01024351445.36
70 rdf:rest Nc5974882c5304ef8985d3efde0995dc1
71 Ned8006d30a614301b71b5b2005117662 schema:name dimensions_id
72 schema:value pub.1022211354
73 rdf:type schema:PropertyValue
74 Nef262cdeaa574d82b6f03f1288b16ecb rdf:first sg:person.01150766232.30
75 rdf:rest N5f566550a03a49b09148e514a6656f8b
76 Nefacda6407ba480aa9742ac750c9c05f schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1051679 schema:issn 2095-9273
85 2095-9281
86 schema:name Science Bulletin
87 rdf:type schema:Periodical
88 sg:person.01024351445.36 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
89 schema:familyName Moler
90 schema:givenName K. A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024351445.36
92 rdf:type schema:Person
93 sg:person.01150766232.30 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
94 schema:familyName Zhang
95 schema:givenName Zuocheng
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150766232.30
97 rdf:type schema:Person
98 sg:person.01200600261.85 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
99 schema:familyName Feng
100 schema:givenName Donglai
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200600261.85
102 rdf:type schema:Person
103 sg:person.012444476521.99 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
104 schema:familyName Song
105 schema:givenName Qi
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012444476521.99
107 rdf:type schema:Person
108 sg:person.01331534615.03 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
109 schema:familyName Liu
110 schema:givenName Chang
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331534615.03
112 rdf:type schema:Person
113 sg:person.01371256171.38 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
114 schema:familyName Wang
115 schema:givenName Yi-Hua
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371256171.38
117 rdf:type schema:Person
118 sg:person.016457262703.94 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
119 schema:familyName Peng
120 schema:givenName Rui
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016457262703.94
122 rdf:type schema:Person
123 sg:person.0635640376.17 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
124 schema:familyName Wang
125 schema:givenName Yayu
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17
127 rdf:type schema:Person
128 sg:pub.10.1038/nature13894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052482923
129 https://doi.org/10.1038/nature13894
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ncomms1273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007803376
132 https://doi.org/10.1038/ncomms1273
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ncomms1946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031043737
135 https://doi.org/10.1038/ncomms1946
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nmat3648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552947
138 https://doi.org/10.1038/nmat3648
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nmat3654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047734086
141 https://doi.org/10.1038/nmat3654
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmat4153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006127136
144 https://doi.org/10.1038/nmat4153
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.1141991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057669719
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.0807325105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783730
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/0256-307x/25/7/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059055795
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/0256-307x/29/3/037402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005911355
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0256-307x/31/1/017401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012254453
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1088/0953-8984/21/14/142203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007935382
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/1674-1056/22/8/086801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059153168
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.84.020503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636084
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.85.224518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006629945
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.86.134508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640094
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.87.220503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641563
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.89.014501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026144795
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.1202226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464469
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1209/0295-5075/83/67006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026081350
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
175 schema:name Stanford Institute for Materials and Energy Science, Stanford University, 94305, Stanford, CA, USA
176 State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.495569.2 schema:alternateName Collaborative Innovation Center of Quantum Matter
179 schema:name Collaborative Innovation Center of Quantum Matter, 100084, Beijing, China
180 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
183 schema:name Collaborative Innovation Center of Advanced Microstructures, Fudan University, 200433, Shanghai, China
184 State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...