Parietal cortex contributions to information granules following memory consolidation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-08

AUTHORS

XiuZhen Wang, Ning Zhong, ShengFu Lu, KunCheng Li, ShuLei Lang

ABSTRACT

Previous studies have focused on changes in cerebral cortex activity accompanying memory formation and consolidation. Although the role of the parietal cortex in memory retrieval is well established, it is not well understood how parietal cortex memory consolidation for mathematical rules is related to granularity of stored information (i.e., degree of detail or precision). Changes in parietal cortex activity associated with memory consolidation were analyzed using the Ebbinghaus paradigm and functional magnetic resonance imaging (fMRI). Over the course of 1 week, participants learned Boolean arithmetic tasks involving stimulus-response mapping rules containing either low- or high-granularity information. FMRI images were collected on day 1 (i.e., low-granularity condition) and day 7 (i.e., high-granularity condition). The present data suggested that with practice, stored information was converted from a low-granularity to a high-granularity form. By following rule learning, it was hypothesized that the process of consolidation would involve an increased degree of rule representation granularity. Evidence for this process was reflected in parietal cortex activity. This finding was consistent with the hypothesis that mnemonic reconstruction in the parietal cortex is required for memory consolidation, and results suggested that information granules are formed during memory consolidation. The present results could increase the understanding of the relationship between memory consolidation and information granularity. More... »

PAGES

2671-2676

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11434-010-4063-x

DOI

http://dx.doi.org/10.1007/s11434-010-4063-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017866931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411991.5", 
          "name": [
            "Learning & Cognition Laboratory, International WIC Institute, Beijing University of Technology, 100022, Beijing, China", 
            "Harbin Normal University, 150301, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "XiuZhen", 
        "id": "sg:person.0744050035.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744050035.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maebashi Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444244.6", 
          "name": [
            "Learning & Cognition Laboratory, International WIC Institute, Beijing University of Technology, 100022, Beijing, China", 
            "Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Ning", 
        "id": "sg:person.012247427067.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "Learning & Cognition Laboratory, International WIC Institute, Beijing University of Technology, 100022, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "ShengFu", 
        "id": "sg:person.0741064405.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "KunCheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411991.5", 
          "name": [
            "Harbin Normal University, 150301, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "ShuLei", 
        "id": "sg:person.011417066223.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417066223.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nn1165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000935058", 
          "https://doi.org/10.1038/nn1165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000935058", 
          "https://doi.org/10.1038/nn1165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.1995.1007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001052529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2006.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001552558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0703225104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003322772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nlm.2007.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005351686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2008.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007454007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009808538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actpsy.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018128102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00048.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018617178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019404457", 
          "https://doi.org/10.1038/nrn1607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019404457", 
          "https://doi.org/10.1038/nrn1607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/0898929042568497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021516787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910330508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025952169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02643290244000239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029504554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cogbrainres.2003.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030078841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cogbrainres.2003.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030078841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5451.248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031047103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2008.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034846667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2007.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039190630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2008.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044103230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nlm.2008.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045059728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2005.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045922225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5237.802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5416.970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062565177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471708607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471708607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698382"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "Previous studies have focused on changes in cerebral cortex activity accompanying memory formation and consolidation. Although the role of the parietal cortex in memory retrieval is well established, it is not well understood how parietal cortex memory consolidation for mathematical rules is related to granularity of stored information (i.e., degree of detail or precision). Changes in parietal cortex activity associated with memory consolidation were analyzed using the Ebbinghaus paradigm and functional magnetic resonance imaging (fMRI). Over the course of 1 week, participants learned Boolean arithmetic tasks involving stimulus-response mapping rules containing either low- or high-granularity information. FMRI images were collected on day 1 (i.e., low-granularity condition) and day 7 (i.e., high-granularity condition). The present data suggested that with practice, stored information was converted from a low-granularity to a high-granularity form. By following rule learning, it was hypothesized that the process of consolidation would involve an increased degree of rule representation granularity. Evidence for this process was reflected in parietal cortex activity. This finding was consistent with the hypothesis that mnemonic reconstruction in the parietal cortex is required for memory consolidation, and results suggested that information granules are formed during memory consolidation. The present results could increase the understanding of the relationship between memory consolidation and information granularity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11434-010-4063-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051679", 
        "issn": [
          "2095-9273", 
          "2095-9281"
        ], 
        "name": "Science Bulletin", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "24", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Parietal cortex contributions to information granules following memory consolidation", 
    "pagination": "2671-2676", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5521307c9b4162fa2b3524788bc95d50fc241997bae8c5e699c996be4582be5e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11434-010-4063-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017866931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11434-010-4063-x", 
      "https://app.dimensions.ai/details/publication/pub.1017866931"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77549_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11434-010-4063-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11434-010-4063-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11434-010-4063-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11434-010-4063-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11434-010-4063-x'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11434-010-4063-x schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nd8b1a8521ebd43f18021dd6a6fdb8acd
4 schema:citation sg:pub.10.1038/nn1165
5 sg:pub.10.1038/nrn1607
6 https://doi.org/10.1002/0471708607
7 https://doi.org/10.1002/mrm.1910330508
8 https://doi.org/10.1006/nimg.1995.1007
9 https://doi.org/10.1016/j.actpsy.2005.11.002
10 https://doi.org/10.1016/j.cogbrainres.2003.09.005
11 https://doi.org/10.1016/j.cortex.2007.06.003
12 https://doi.org/10.1016/j.neuroimage.2005.11.016
13 https://doi.org/10.1016/j.neuron.2006.11.022
14 https://doi.org/10.1016/j.neuropsychologia.2008.01.004
15 https://doi.org/10.1016/j.neuropsychologia.2008.03.019
16 https://doi.org/10.1016/j.nlm.2007.08.012
17 https://doi.org/10.1016/j.nlm.2008.10.011
18 https://doi.org/10.1016/j.tics.2005.07.001
19 https://doi.org/10.1016/j.tics.2008.01.006
20 https://doi.org/10.1073/pnas.0703225104
21 https://doi.org/10.1080/02643290244000239
22 https://doi.org/10.1126/science.270.5237.802
23 https://doi.org/10.1126/science.284.5416.970
24 https://doi.org/10.1126/science.287.5451.248
25 https://doi.org/10.1152/jn.00048.2006
26 https://doi.org/10.1162/0898929042568497
27 schema:datePublished 2010-08
28 schema:datePublishedReg 2010-08-01
29 schema:description Previous studies have focused on changes in cerebral cortex activity accompanying memory formation and consolidation. Although the role of the parietal cortex in memory retrieval is well established, it is not well understood how parietal cortex memory consolidation for mathematical rules is related to granularity of stored information (i.e., degree of detail or precision). Changes in parietal cortex activity associated with memory consolidation were analyzed using the Ebbinghaus paradigm and functional magnetic resonance imaging (fMRI). Over the course of 1 week, participants learned Boolean arithmetic tasks involving stimulus-response mapping rules containing either low- or high-granularity information. FMRI images were collected on day 1 (i.e., low-granularity condition) and day 7 (i.e., high-granularity condition). The present data suggested that with practice, stored information was converted from a low-granularity to a high-granularity form. By following rule learning, it was hypothesized that the process of consolidation would involve an increased degree of rule representation granularity. Evidence for this process was reflected in parietal cortex activity. This finding was consistent with the hypothesis that mnemonic reconstruction in the parietal cortex is required for memory consolidation, and results suggested that information granules are formed during memory consolidation. The present results could increase the understanding of the relationship between memory consolidation and information granularity.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N055d32b127364192a0f797f8ed1ab1f4
34 N419cb6c2b2164395aafd919c4cc21c22
35 sg:journal.1051679
36 schema:name Parietal cortex contributions to information granules following memory consolidation
37 schema:pagination 2671-2676
38 schema:productId N468914fc0df3439fbfb64ed76612e9cb
39 N75a113fa8cc848fa9a657532048caa49
40 N950ffa0518094512afd71aeb7a6af3c4
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017866931
42 https://doi.org/10.1007/s11434-010-4063-x
43 schema:sdDatePublished 2019-04-11T10:48
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N38658d9b7cfb4b08b81324262c1736f8
46 schema:url http://link.springer.com/10.1007%2Fs11434-010-4063-x
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N055d32b127364192a0f797f8ed1ab1f4 schema:issueNumber 24
51 rdf:type schema:PublicationIssue
52 N253543bf60ef43179e7e3bb2193927cc rdf:first sg:person.0741064405.61
53 rdf:rest N309598980cc14388b84a74fb420fdd51
54 N309598980cc14388b84a74fb420fdd51 rdf:first sg:person.01326527402.59
55 rdf:rest N3aeba8b628db45ae97b74aeba97d1ff5
56 N38658d9b7cfb4b08b81324262c1736f8 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N3aeba8b628db45ae97b74aeba97d1ff5 rdf:first sg:person.011417066223.18
59 rdf:rest rdf:nil
60 N419cb6c2b2164395aafd919c4cc21c22 schema:volumeNumber 55
61 rdf:type schema:PublicationVolume
62 N468914fc0df3439fbfb64ed76612e9cb schema:name dimensions_id
63 schema:value pub.1017866931
64 rdf:type schema:PropertyValue
65 N75a113fa8cc848fa9a657532048caa49 schema:name doi
66 schema:value 10.1007/s11434-010-4063-x
67 rdf:type schema:PropertyValue
68 N950ffa0518094512afd71aeb7a6af3c4 schema:name readcube_id
69 schema:value 5521307c9b4162fa2b3524788bc95d50fc241997bae8c5e699c996be4582be5e
70 rdf:type schema:PropertyValue
71 Nd8b1a8521ebd43f18021dd6a6fdb8acd rdf:first sg:person.0744050035.92
72 rdf:rest Nff681dafa6704447851db308fc5d2b6b
73 Nff681dafa6704447851db308fc5d2b6b rdf:first sg:person.012247427067.95
74 rdf:rest N253543bf60ef43179e7e3bb2193927cc
75 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
76 schema:name Psychology and Cognitive Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
79 schema:name Psychology
80 rdf:type schema:DefinedTerm
81 sg:journal.1051679 schema:issn 2095-9273
82 2095-9281
83 schema:name Science Bulletin
84 rdf:type schema:Periodical
85 sg:person.011417066223.18 schema:affiliation https://www.grid.ac/institutes/grid.411991.5
86 schema:familyName Lang
87 schema:givenName ShuLei
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011417066223.18
89 rdf:type schema:Person
90 sg:person.012247427067.95 schema:affiliation https://www.grid.ac/institutes/grid.444244.6
91 schema:familyName Zhong
92 schema:givenName Ning
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247427067.95
94 rdf:type schema:Person
95 sg:person.01326527402.59 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
96 schema:familyName Li
97 schema:givenName KunCheng
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
99 rdf:type schema:Person
100 sg:person.0741064405.61 schema:affiliation https://www.grid.ac/institutes/grid.28703.3e
101 schema:familyName Lu
102 schema:givenName ShengFu
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741064405.61
104 rdf:type schema:Person
105 sg:person.0744050035.92 schema:affiliation https://www.grid.ac/institutes/grid.411991.5
106 schema:familyName Wang
107 schema:givenName XiuZhen
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744050035.92
109 rdf:type schema:Person
110 sg:pub.10.1038/nn1165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000935058
111 https://doi.org/10.1038/nn1165
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nrn1607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019404457
114 https://doi.org/10.1038/nrn1607
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/0471708607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698382
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/mrm.1910330508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025952169
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1006/nimg.1995.1007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001052529
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.actpsy.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018128102
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.cogbrainres.2003.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030078841
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cortex.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039190630
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.neuroimage.2005.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045922225
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.neuron.2006.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001552558
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.neuropsychologia.2008.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044103230
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.neuropsychologia.2008.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007454007
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.nlm.2007.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005351686
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.nlm.2008.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045059728
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.tics.2005.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009808538
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.tics.2008.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034846667
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.0703225104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003322772
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/02643290244000239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029504554
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1126/science.270.5237.802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551549
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/science.284.5416.970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565177
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.287.5451.248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031047103
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1152/jn.00048.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018617178
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1162/0898929042568497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021516787
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
159 schema:name Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.28703.3e schema:alternateName Beijing University of Technology
162 schema:name Learning & Cognition Laboratory, International WIC Institute, Beijing University of Technology, 100022, Beijing, China
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.411991.5 schema:alternateName Harbin Normal University
165 schema:name Harbin Normal University, 150301, Harbin, China
166 Learning & Cognition Laboratory, International WIC Institute, Beijing University of Technology, 100022, Beijing, China
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.444244.6 schema:alternateName Maebashi Institute of Technology
169 schema:name Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Japan
170 Learning & Cognition Laboratory, International WIC Institute, Beijing University of Technology, 100022, Beijing, China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...