Large transverse thermoelectric figure of merit in a topological Dirac semimetal View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-11-19

AUTHORS

JunSen Xiang, SiLe Hu, Meng Lyu, WenLiang Zhu, ChaoYang Ma, ZiYu Chen, Frank Steglich, GenFu Chen, PeiJie Sun

ABSTRACT

The Seebeck effect encounters a few fundamental constraints hindering its thermoelectric (TE) conversion efficiency. Most notably, there are the charge compensation of electrons and holes that diminishes this effect, and the Wiedemann-Franz (WF) law that makes independent optimization of the corresponding electrical and thermal conductivities impossible. Here, we demonstrate that in the topological Dirac semimetal Cd3As2 the Nernst effect, i.e., the transverse counterpart of the Seebeck effect, can generate a large TE figure of merit zNT. At room temperature, zNT ≈ 0.5 in a small field of 2 T and it significantly surmounts its longitudinal counterpart for any field. A large Nernst effect is genetically expected in topological semimetals, benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities. In this case, heat and charge transport are orthogonal, i.e., not intertwined by the WF law anymore. More importantly, further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport, but also the anomalous Nernst effect arising from a pronounced Berry curvature. A combination of the topologically trivial and nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity. More... »

PAGES

237011

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-019-1445-4

DOI

http://dx.doi.org/10.1007/s11433-019-1445-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122753256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, 100191, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "JunSen", 
        "id": "sg:person.014246747177.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014246747177.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "SiLe", 
        "id": "sg:person.07521247123.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521247123.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyu", 
        "givenName": "Meng", 
        "id": "sg:person.07625424315.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07625424315.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "WenLiang", 
        "id": "sg:person.013615517757.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013615517757.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "ChaoYang", 
        "id": "sg:person.016655770653.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016655770653.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, 100191, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "ZiYu", 
        "id": "sg:person.07722151014.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07722151014.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steglich", 
        "givenName": "Frank", 
        "id": "sg:person.01061214726.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, 523808, Dongguan, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China", 
            "Songshan Lake Materials Laboratory, 523808, Dongguan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "GenFu", 
        "id": "sg:person.01216227531.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216227531.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Lake Materials Laboratory, 523808, Dongguan, China", 
          "id": "http://www.grid.ac/institutes/grid.511002.7", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China", 
            "Songshan Lake Materials Laboratory, 523808, Dongguan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "PeiJie", 
        "id": "sg:person.0616273273.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616273273.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41467-018-06688-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107353289", 
          "https://doi.org/10.1038/s41467-018-06688-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050812169", 
          "https://doi.org/10.1038/nmat4143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014989328", 
          "https://doi.org/10.1038/nmat2090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029680711", 
          "https://doi.org/10.1038/ncomms3696"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-11-19", 
    "datePublishedReg": "2019-11-19", 
    "description": "The Seebeck effect encounters a few fundamental constraints hindering its thermoelectric (TE) conversion efficiency. Most notably, there are the charge compensation of electrons and holes that diminishes this effect, and the Wiedemann-Franz (WF) law that makes independent optimization of the corresponding electrical and thermal conductivities impossible. Here, we demonstrate that in the topological Dirac semimetal Cd3As2 the Nernst effect, i.e., the transverse counterpart of the Seebeck effect, can generate a large TE figure of merit zNT. At room temperature, zNT \u2248 0.5 in a small field of 2 T and it significantly surmounts its longitudinal counterpart for any field. A large Nernst effect is genetically expected in topological semimetals, benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities. In this case, heat and charge transport are orthogonal, i.e., not intertwined by the WF law anymore. More importantly, further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport, but also the anomalous Nernst effect arising from a pronounced Berry curvature. A combination of the topologically trivial and nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11433-019-1445-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "Nernst effect", 
      "topological Dirac semimetal Cd3As2", 
      "topological Dirac semimetal", 
      "Dirac semimetal Cd3As2", 
      "bipolar transport", 
      "large Nernst effect", 
      "Seebeck effect", 
      "anomalous Nernst effect", 
      "Dirac semimetals", 
      "topological semimetals", 
      "compensated electron", 
      "Dirac nodes", 
      "Berry curvature", 
      "Fermi level", 
      "longitudinal counterpart", 
      "Wiedemann-Franz law", 
      "transverse thermoelectricity", 
      "semimetals", 
      "small fields", 
      "charge transport", 
      "conversion efficiency", 
      "electrons", 
      "room temperature", 
      "charge compensation", 
      "holes", 
      "WF law", 
      "high mobility", 
      "fundamental constraints", 
      "Cd3As2", 
      "independent optimization", 
      "field", 
      "nontrivial advantages", 
      "transport", 
      "new avenues", 
      "thermoelectric conversion efficiency", 
      "thermoelectric figure", 
      "thermoelectricity", 
      "TE figure", 
      "further optimization", 
      "temperature", 
      "conductivity", 
      "thermal conductivity", 
      "transverse counterpart", 
      "counterparts", 
      "curvature", 
      "mobility", 
      "effect", 
      "law", 
      "compensation", 
      "efficiency", 
      "merits", 
      "figures", 
      "avenues", 
      "heat", 
      "constraints", 
      "advantages", 
      "optimization", 
      "ZnTs", 
      "combination", 
      "cases", 
      "levels", 
      "nodes"
    ], 
    "name": "Large transverse thermoelectric figure of merit in a topological Dirac semimetal", 
    "pagination": "237011", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122753256"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-019-1445-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-019-1445-4", 
      "https://app.dimensions.ai/details/publication/pub.1122753256"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_823.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11433-019-1445-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-019-1445-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-019-1445-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-019-1445-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-019-1445-4'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      90 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-019-1445-4 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N1aa232f3a5b14de8bc29e623b6f0ae7f
4 schema:citation sg:pub.10.1038/ncomms3696
5 sg:pub.10.1038/nmat2090
6 sg:pub.10.1038/nmat4143
7 sg:pub.10.1038/s41467-018-06688-y
8 schema:datePublished 2019-11-19
9 schema:datePublishedReg 2019-11-19
10 schema:description The Seebeck effect encounters a few fundamental constraints hindering its thermoelectric (TE) conversion efficiency. Most notably, there are the charge compensation of electrons and holes that diminishes this effect, and the Wiedemann-Franz (WF) law that makes independent optimization of the corresponding electrical and thermal conductivities impossible. Here, we demonstrate that in the topological Dirac semimetal Cd3As2 the Nernst effect, i.e., the transverse counterpart of the Seebeck effect, can generate a large TE figure of merit zNT. At room temperature, zNT ≈ 0.5 in a small field of 2 T and it significantly surmounts its longitudinal counterpart for any field. A large Nernst effect is genetically expected in topological semimetals, benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities. In this case, heat and charge transport are orthogonal, i.e., not intertwined by the WF law anymore. More importantly, further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport, but also the anomalous Nernst effect arising from a pronounced Berry curvature. A combination of the topologically trivial and nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N29f57d109376404bad97c3755839ddb9
14 N8ec3ef3d9f764b03a836e713f33011f3
15 sg:journal.1282972
16 schema:keywords Berry curvature
17 Cd3As2
18 Dirac nodes
19 Dirac semimetal Cd3As2
20 Dirac semimetals
21 Fermi level
22 Nernst effect
23 Seebeck effect
24 TE figure
25 WF law
26 Wiedemann-Franz law
27 ZnTs
28 advantages
29 anomalous Nernst effect
30 avenues
31 bipolar transport
32 cases
33 charge compensation
34 charge transport
35 combination
36 compensated electron
37 compensation
38 conductivity
39 constraints
40 conversion efficiency
41 counterparts
42 curvature
43 effect
44 efficiency
45 electrons
46 field
47 figures
48 fundamental constraints
49 further optimization
50 heat
51 high mobility
52 holes
53 independent optimization
54 large Nernst effect
55 law
56 levels
57 longitudinal counterpart
58 merits
59 mobility
60 new avenues
61 nodes
62 nontrivial advantages
63 optimization
64 room temperature
65 semimetals
66 small fields
67 temperature
68 thermal conductivity
69 thermoelectric conversion efficiency
70 thermoelectric figure
71 thermoelectricity
72 topological Dirac semimetal
73 topological Dirac semimetal Cd3As2
74 topological semimetals
75 transport
76 transverse counterpart
77 transverse thermoelectricity
78 schema:name Large transverse thermoelectric figure of merit in a topological Dirac semimetal
79 schema:pagination 237011
80 schema:productId N2b8d8c9ecbe54a07871e99d6107c51b4
81 Nec699ecd90624e5dbee519e2cd2ee7d2
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122753256
83 https://doi.org/10.1007/s11433-019-1445-4
84 schema:sdDatePublished 2022-09-02T16:03
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N9a0e4a00a9ae413cbc616d324d7fbea1
87 schema:url https://doi.org/10.1007/s11433-019-1445-4
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N1aa232f3a5b14de8bc29e623b6f0ae7f rdf:first sg:person.014246747177.62
92 rdf:rest Na53f30aad30a4d5f8e2d5e7e9b5a8856
93 N29f57d109376404bad97c3755839ddb9 schema:volumeNumber 63
94 rdf:type schema:PublicationVolume
95 N2b8d8c9ecbe54a07871e99d6107c51b4 schema:name dimensions_id
96 schema:value pub.1122753256
97 rdf:type schema:PropertyValue
98 N59d3934e1bd041d68be849cd2fe2bca0 rdf:first sg:person.01216227531.85
99 rdf:rest Nb216ebc5e4764290aaa50bc39afc4aa0
100 N6b34e85b274f48649b51739fba581dcc rdf:first sg:person.01061214726.76
101 rdf:rest N59d3934e1bd041d68be849cd2fe2bca0
102 N6eeafe2e7a6345208282d95be98ba8d5 rdf:first sg:person.016655770653.37
103 rdf:rest Nc1b15a4689394bf1b0db0c0d712a04e9
104 N8ec3ef3d9f764b03a836e713f33011f3 schema:issueNumber 3
105 rdf:type schema:PublicationIssue
106 N9a0e4a00a9ae413cbc616d324d7fbea1 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Na53f30aad30a4d5f8e2d5e7e9b5a8856 rdf:first sg:person.07521247123.29
109 rdf:rest Nd92d5117cabe4832a3c1694307092fb8
110 Nb216ebc5e4764290aaa50bc39afc4aa0 rdf:first sg:person.0616273273.89
111 rdf:rest rdf:nil
112 Nbfff772c36d241b5aa7fdb40f6644bb1 rdf:first sg:person.013615517757.01
113 rdf:rest N6eeafe2e7a6345208282d95be98ba8d5
114 Nc1b15a4689394bf1b0db0c0d712a04e9 rdf:first sg:person.07722151014.28
115 rdf:rest N6b34e85b274f48649b51739fba581dcc
116 Nd92d5117cabe4832a3c1694307092fb8 rdf:first sg:person.07625424315.38
117 rdf:rest Nbfff772c36d241b5aa7fdb40f6644bb1
118 Nec699ecd90624e5dbee519e2cd2ee7d2 schema:name doi
119 schema:value 10.1007/s11433-019-1445-4
120 rdf:type schema:PropertyValue
121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
125 schema:name Astronomical and Space Sciences
126 rdf:type schema:DefinedTerm
127 sg:journal.1282972 schema:issn 1674-7348
128 1869-1927
129 schema:name Science China Physics, Mechanics & Astronomy
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.419507.e
133 schema:familyName Steglich
134 schema:givenName Frank
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
136 rdf:type schema:Person
137 sg:person.01216227531.85 schema:affiliation grid-institutes:grid.511002.7
138 schema:familyName Chen
139 schema:givenName GenFu
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216227531.85
141 rdf:type schema:Person
142 sg:person.013615517757.01 schema:affiliation grid-institutes:grid.410726.6
143 schema:familyName Zhu
144 schema:givenName WenLiang
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013615517757.01
146 rdf:type schema:Person
147 sg:person.014246747177.62 schema:affiliation grid-institutes:grid.64939.31
148 schema:familyName Xiang
149 schema:givenName JunSen
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014246747177.62
151 rdf:type schema:Person
152 sg:person.016655770653.37 schema:affiliation grid-institutes:grid.410726.6
153 schema:familyName Ma
154 schema:givenName ChaoYang
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016655770653.37
156 rdf:type schema:Person
157 sg:person.0616273273.89 schema:affiliation grid-institutes:grid.511002.7
158 schema:familyName Sun
159 schema:givenName PeiJie
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616273273.89
161 rdf:type schema:Person
162 sg:person.07521247123.29 schema:affiliation grid-institutes:grid.410726.6
163 schema:familyName Hu
164 schema:givenName SiLe
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521247123.29
166 rdf:type schema:Person
167 sg:person.07625424315.38 schema:affiliation grid-institutes:grid.410726.6
168 schema:familyName Lyu
169 schema:givenName Meng
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07625424315.38
171 rdf:type schema:Person
172 sg:person.07722151014.28 schema:affiliation grid-institutes:grid.64939.31
173 schema:familyName Chen
174 schema:givenName ZiYu
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07722151014.28
176 rdf:type schema:Person
177 sg:pub.10.1038/ncomms3696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029680711
178 https://doi.org/10.1038/ncomms3696
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat2090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014989328
181 https://doi.org/10.1038/nmat2090
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812169
184 https://doi.org/10.1038/nmat4143
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/s41467-018-06688-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107353289
187 https://doi.org/10.1038/s41467-018-06688-y
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, 100049, Beijing, China
190 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
191 University of Chinese Academy of Sciences, 100049, Beijing, China
192 rdf:type schema:Organization
193 grid-institutes:grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
194 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
195 Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
196 rdf:type schema:Organization
197 grid-institutes:grid.511002.7 schema:alternateName Songshan Lake Materials Laboratory, 523808, Dongguan, China
198 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
199 Songshan Lake Materials Laboratory, 523808, Dongguan, China
200 University of Chinese Academy of Sciences, 100049, Beijing, China
201 rdf:type schema:Organization
202 grid-institutes:grid.64939.31 schema:alternateName Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, 100191, Beijing, China
203 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
204 Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, 100191, Beijing, China
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...