Interplay between the glass and the gel transition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06-05

AUTHORS

Annalisa Fierro, Antonio de Candia, Antonio Coniglio

ABSTRACT

By changing the control parameters, many physical systems reach a slow dynamics regime followed by an arrested or a quasi- arrested state. Examples, among others, are gels and glasses. In this paper, we discuss some experimental and theoretical results in polymer and colloidal systems, where gel and glass transitions interfere, and use models from Mode Coupling Theory (MCT) to illustrate the rich phenomenology observed. The continuous and the discontinuous transition lines, found in the MCT models, are considered suitable to describe respectively the gel and the glass transitions, so we suggest that the interplay between gel and glass may be interpreted in terms of the F13 MCT model, clarifying also the origin of logarithmic decays often observed in such systems. In particular, the theoretical predictions of the MCT in the F13 model are compared with Molecular Dynamics simulations in model systems for chemical gels and charged colloids. More... »

PAGES

107007

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3

DOI

http://dx.doi.org/10.1007/s11433-018-9403-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1116871060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fierro", 
        "givenName": "Annalisa", 
        "id": "sg:person.01044655336.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044655336.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica \u201cPancini\u201d, Universit\u00e0 di Napoli \u201cFederico II\u201d, Complesso di Monte S. Angelo, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Fisica \u201cPancini\u201d, Universit\u00e0 di Napoli \u201cFederico II\u201d, Complesso di Monte S. Angelo, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Candia", 
        "givenName": "Antonio", 
        "id": "sg:person.01231027712.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231027712.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "Antonio", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjst/e2014-02265-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007040749", 
          "https://doi.org/10.1140/epjst/e2014-02265-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025213196", 
          "https://doi.org/10.1038/srep26481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2016-60175-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084226676", 
          "https://doi.org/10.1140/epjst/e2016-60175-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01312829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015257076", 
          "https://doi.org/10.1007/bf01312829"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06-05", 
    "datePublishedReg": "2019-06-05", 
    "description": "By changing the control parameters, many physical systems reach a slow dynamics regime followed by an arrested or a quasi- arrested state. Examples, among others, are gels and glasses. In this paper, we discuss some experimental and theoretical results in polymer and colloidal systems, where gel and glass transitions interfere, and use models from Mode Coupling Theory (MCT) to illustrate the rich phenomenology observed. The continuous and the discontinuous transition lines, found in the MCT models, are considered suitable to describe respectively the gel and the glass transitions, so we suggest that the interplay between gel and glass may be interpreted in terms of the F13 MCT model, clarifying also the origin of logarithmic decays often observed in such systems. In particular, the theoretical predictions of the MCT in the F13 model are compared with Molecular Dynamics simulations in model systems for chemical gels and charged colloids.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11433-018-9403-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "molecular dynamics simulations", 
      "glass transition", 
      "chemical gels", 
      "gel transition", 
      "colloidal systems", 
      "mode coupling theory", 
      "slow dynamics regime", 
      "dynamics simulations", 
      "gel", 
      "discontinuous transition line", 
      "glass", 
      "polymers", 
      "physical systems", 
      "model system", 
      "theoretical results", 
      "colloids", 
      "MCT model", 
      "control parameters", 
      "transition line", 
      "rich phenomenology", 
      "logarithmic decay", 
      "coupling theory", 
      "dynamic regimes", 
      "such systems", 
      "theoretical predictions", 
      "transition", 
      "model", 
      "theory", 
      "system", 
      "simulations", 
      "interplay", 
      "parameters", 
      "decay", 
      "state", 
      "regime", 
      "prediction", 
      "terms", 
      "example", 
      "phenomenology", 
      "results", 
      "origin", 
      "lines", 
      "paper"
    ], 
    "name": "Interplay between the glass and the gel transition", 
    "pagination": "107007", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1116871060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-018-9403-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-018-9403-3", 
      "https://app.dimensions.ai/details/publication/pub.1116871060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_801.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11433-018-9403-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      72 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-018-9403-3 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N39f5f6fe138f4686b33f4f3ca4e1e88a
4 schema:citation sg:pub.10.1007/bf01312829
5 sg:pub.10.1038/srep26481
6 sg:pub.10.1140/epjst/e2014-02265-0
7 sg:pub.10.1140/epjst/e2016-60175-x
8 schema:datePublished 2019-06-05
9 schema:datePublishedReg 2019-06-05
10 schema:description By changing the control parameters, many physical systems reach a slow dynamics regime followed by an arrested or a quasi- arrested state. Examples, among others, are gels and glasses. In this paper, we discuss some experimental and theoretical results in polymer and colloidal systems, where gel and glass transitions interfere, and use models from Mode Coupling Theory (MCT) to illustrate the rich phenomenology observed. The continuous and the discontinuous transition lines, found in the MCT models, are considered suitable to describe respectively the gel and the glass transitions, so we suggest that the interplay between gel and glass may be interpreted in terms of the F13 MCT model, clarifying also the origin of logarithmic decays often observed in such systems. In particular, the theoretical predictions of the MCT in the F13 model are compared with Molecular Dynamics simulations in model systems for chemical gels and charged colloids.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nc547a4766256478e836fd417f9778e31
15 Nc866455d1df3473e947e97c8181b6da1
16 sg:journal.1282972
17 schema:keywords MCT model
18 chemical gels
19 colloidal systems
20 colloids
21 control parameters
22 coupling theory
23 decay
24 discontinuous transition line
25 dynamic regimes
26 dynamics simulations
27 example
28 gel
29 gel transition
30 glass
31 glass transition
32 interplay
33 lines
34 logarithmic decay
35 mode coupling theory
36 model
37 model system
38 molecular dynamics simulations
39 origin
40 paper
41 parameters
42 phenomenology
43 physical systems
44 polymers
45 prediction
46 regime
47 results
48 rich phenomenology
49 simulations
50 slow dynamics regime
51 state
52 such systems
53 system
54 terms
55 theoretical predictions
56 theoretical results
57 theory
58 transition
59 transition line
60 schema:name Interplay between the glass and the gel transition
61 schema:pagination 107007
62 schema:productId Na564c2b614de486e8a3281ede8e660a7
63 Nac77d70aa22148a1a0d1bc971174a9da
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116871060
65 https://doi.org/10.1007/s11433-018-9403-3
66 schema:sdDatePublished 2022-05-10T10:24
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N4ae8fc95d28041fdad82d3cca5c0b892
69 schema:url https://doi.org/10.1007/s11433-018-9403-3
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N39f5f6fe138f4686b33f4f3ca4e1e88a rdf:first sg:person.01044655336.45
74 rdf:rest N51a0233fb2324fd987bf10dfcb351b6e
75 N4ae8fc95d28041fdad82d3cca5c0b892 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N51a0233fb2324fd987bf10dfcb351b6e rdf:first sg:person.01231027712.80
78 rdf:rest Nf879e39d883740b2a85092d0bd4df902
79 Na564c2b614de486e8a3281ede8e660a7 schema:name dimensions_id
80 schema:value pub.1116871060
81 rdf:type schema:PropertyValue
82 Nac77d70aa22148a1a0d1bc971174a9da schema:name doi
83 schema:value 10.1007/s11433-018-9403-3
84 rdf:type schema:PropertyValue
85 Nc547a4766256478e836fd417f9778e31 schema:volumeNumber 62
86 rdf:type schema:PublicationVolume
87 Nc866455d1df3473e947e97c8181b6da1 schema:issueNumber 10
88 rdf:type schema:PublicationIssue
89 Nf879e39d883740b2a85092d0bd4df902 rdf:first sg:person.01227217136.16
90 rdf:rest rdf:nil
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
95 schema:name Astronomical and Space Sciences
96 rdf:type schema:DefinedTerm
97 sg:journal.1282972 schema:issn 1674-7348
98 1869-1927
99 schema:name Science China Physics, Mechanics & Astronomy
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.01044655336.45 schema:affiliation grid-institutes:None
103 schema:familyName Fierro
104 schema:givenName Annalisa
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044655336.45
106 rdf:type schema:Person
107 sg:person.01227217136.16 schema:affiliation grid-institutes:None
108 schema:familyName Coniglio
109 schema:givenName Antonio
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
111 rdf:type schema:Person
112 sg:person.01231027712.80 schema:affiliation grid-institutes:grid.4691.a
113 schema:familyName de Candia
114 schema:givenName Antonio
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231027712.80
116 rdf:type schema:Person
117 sg:pub.10.1007/bf01312829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015257076
118 https://doi.org/10.1007/bf01312829
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/srep26481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025213196
121 https://doi.org/10.1038/srep26481
122 rdf:type schema:CreativeWork
123 sg:pub.10.1140/epjst/e2014-02265-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007040749
124 https://doi.org/10.1140/epjst/e2014-02265-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1140/epjst/e2016-60175-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084226676
127 https://doi.org/10.1140/epjst/e2016-60175-x
128 rdf:type schema:CreativeWork
129 grid-institutes:None schema:alternateName CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy
130 schema:name CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy
131 rdf:type schema:Organization
132 grid-institutes:grid.4691.a schema:alternateName Dipartimento di Fisica “Pancini”, Università di Napoli “Federico II”, Complesso di Monte S. Angelo, 80126, Napoli, Italy
133 schema:name Dipartimento di Fisica “Pancini”, Università di Napoli “Federico II”, Complesso di Monte S. Angelo, 80126, Napoli, Italy
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...