Interplay between the glass and the gel transition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06-05

AUTHORS

Annalisa Fierro, Antonio de Candia, Antonio Coniglio

ABSTRACT

By changing the control parameters, many physical systems reach a slow dynamics regime followed by an arrested or a quasi- arrested state. Examples, among others, are gels and glasses. In this paper, we discuss some experimental and theoretical results in polymer and colloidal systems, where gel and glass transitions interfere, and use models from Mode Coupling Theory (MCT) to illustrate the rich phenomenology observed. The continuous and the discontinuous transition lines, found in the MCT models, are considered suitable to describe respectively the gel and the glass transitions, so we suggest that the interplay between gel and glass may be interpreted in terms of the F13 MCT model, clarifying also the origin of logarithmic decays often observed in such systems. In particular, the theoretical predictions of the MCT in the F13 model are compared with Molecular Dynamics simulations in model systems for chemical gels and charged colloids. More... »

PAGES

107007

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3

DOI

http://dx.doi.org/10.1007/s11433-018-9403-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1116871060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fierro", 
        "givenName": "Annalisa", 
        "id": "sg:person.01044655336.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044655336.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica \u201cPancini\u201d, Universit\u00e0 di Napoli \u201cFederico II\u201d, Complesso di Monte S. Angelo, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Fisica \u201cPancini\u201d, Universit\u00e0 di Napoli \u201cFederico II\u201d, Complesso di Monte S. Angelo, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Candia", 
        "givenName": "Antonio", 
        "id": "sg:person.01231027712.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231027712.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "Antonio", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep26481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025213196", 
          "https://doi.org/10.1038/srep26481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01312829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015257076", 
          "https://doi.org/10.1007/bf01312829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2014-02265-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007040749", 
          "https://doi.org/10.1140/epjst/e2014-02265-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2016-60175-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084226676", 
          "https://doi.org/10.1140/epjst/e2016-60175-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06-05", 
    "datePublishedReg": "2019-06-05", 
    "description": "By changing the control parameters, many physical systems reach a slow dynamics regime followed by an arrested or a quasi- arrested state. Examples, among others, are gels and glasses. In this paper, we discuss some experimental and theoretical results in polymer and colloidal systems, where gel and glass transitions interfere, and use models from Mode Coupling Theory (MCT) to illustrate the rich phenomenology observed. The continuous and the discontinuous transition lines, found in the MCT models, are considered suitable to describe respectively the gel and the glass transitions, so we suggest that the interplay between gel and glass may be interpreted in terms of the F13 MCT model, clarifying also the origin of logarithmic decays often observed in such systems. In particular, the theoretical predictions of the MCT in the F13 model are compared with Molecular Dynamics simulations in model systems for chemical gels and charged colloids.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11433-018-9403-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "molecular dynamics simulations", 
      "glass transition", 
      "chemical gels", 
      "gel transition", 
      "colloidal systems", 
      "mode coupling theory", 
      "slow dynamics regime", 
      "dynamics simulations", 
      "gel", 
      "discontinuous transition line", 
      "glass", 
      "polymers", 
      "physical systems", 
      "model system", 
      "theoretical results", 
      "colloids", 
      "MCT model", 
      "control parameters", 
      "transition line", 
      "rich phenomenology", 
      "logarithmic decay", 
      "coupling theory", 
      "dynamic regimes", 
      "such systems", 
      "theoretical predictions", 
      "transition", 
      "model", 
      "theory", 
      "system", 
      "simulations", 
      "interplay", 
      "parameters", 
      "decay", 
      "state", 
      "regime", 
      "prediction", 
      "terms", 
      "example", 
      "phenomenology", 
      "results", 
      "origin", 
      "lines", 
      "paper", 
      "quasi- arrested state", 
      "F13 MCT model", 
      "F13 model"
    ], 
    "name": "Interplay between the glass and the gel transition", 
    "pagination": "107007", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1116871060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-018-9403-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-018-9403-3", 
      "https://app.dimensions.ai/details/publication/pub.1116871060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_801.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11433-018-9403-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-018-9403-3'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      75 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-018-9403-3 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N3624318a95114dba9582800c30e624dd
4 schema:citation sg:pub.10.1007/bf01312829
5 sg:pub.10.1038/srep26481
6 sg:pub.10.1140/epjst/e2014-02265-0
7 sg:pub.10.1140/epjst/e2016-60175-x
8 schema:datePublished 2019-06-05
9 schema:datePublishedReg 2019-06-05
10 schema:description By changing the control parameters, many physical systems reach a slow dynamics regime followed by an arrested or a quasi- arrested state. Examples, among others, are gels and glasses. In this paper, we discuss some experimental and theoretical results in polymer and colloidal systems, where gel and glass transitions interfere, and use models from Mode Coupling Theory (MCT) to illustrate the rich phenomenology observed. The continuous and the discontinuous transition lines, found in the MCT models, are considered suitable to describe respectively the gel and the glass transitions, so we suggest that the interplay between gel and glass may be interpreted in terms of the F13 MCT model, clarifying also the origin of logarithmic decays often observed in such systems. In particular, the theoretical predictions of the MCT in the F13 model are compared with Molecular Dynamics simulations in model systems for chemical gels and charged colloids.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N020445a6fc104eefb3f65df68e513395
15 N95f9994fd1a34b558801c17c8e06c501
16 sg:journal.1282972
17 schema:keywords F13 MCT model
18 F13 model
19 MCT model
20 chemical gels
21 colloidal systems
22 colloids
23 control parameters
24 coupling theory
25 decay
26 discontinuous transition line
27 dynamic regimes
28 dynamics simulations
29 example
30 gel
31 gel transition
32 glass
33 glass transition
34 interplay
35 lines
36 logarithmic decay
37 mode coupling theory
38 model
39 model system
40 molecular dynamics simulations
41 origin
42 paper
43 parameters
44 phenomenology
45 physical systems
46 polymers
47 prediction
48 quasi- arrested state
49 regime
50 results
51 rich phenomenology
52 simulations
53 slow dynamics regime
54 state
55 such systems
56 system
57 terms
58 theoretical predictions
59 theoretical results
60 theory
61 transition
62 transition line
63 schema:name Interplay between the glass and the gel transition
64 schema:pagination 107007
65 schema:productId Naffcbc8b65484f4386603f550a232840
66 Ne53f8f5a76ac4c7f8cf0b9a98dac0961
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116871060
68 https://doi.org/10.1007/s11433-018-9403-3
69 schema:sdDatePublished 2022-01-01T18:52
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nefa44a7570054e86a482e1cda51c3eb9
72 schema:url https://doi.org/10.1007/s11433-018-9403-3
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N01e06b10b20846cbb91cb55dfbb5b4f9 rdf:first sg:person.01231027712.80
77 rdf:rest N27236bbfe5f74e2485d1fc511cd50d67
78 N020445a6fc104eefb3f65df68e513395 schema:volumeNumber 62
79 rdf:type schema:PublicationVolume
80 N27236bbfe5f74e2485d1fc511cd50d67 rdf:first sg:person.01227217136.16
81 rdf:rest rdf:nil
82 N3624318a95114dba9582800c30e624dd rdf:first sg:person.01044655336.45
83 rdf:rest N01e06b10b20846cbb91cb55dfbb5b4f9
84 N95f9994fd1a34b558801c17c8e06c501 schema:issueNumber 10
85 rdf:type schema:PublicationIssue
86 Naffcbc8b65484f4386603f550a232840 schema:name doi
87 schema:value 10.1007/s11433-018-9403-3
88 rdf:type schema:PropertyValue
89 Ne53f8f5a76ac4c7f8cf0b9a98dac0961 schema:name dimensions_id
90 schema:value pub.1116871060
91 rdf:type schema:PropertyValue
92 Nefa44a7570054e86a482e1cda51c3eb9 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
98 schema:name Astronomical and Space Sciences
99 rdf:type schema:DefinedTerm
100 sg:journal.1282972 schema:issn 1674-7348
101 1869-1927
102 schema:name Science China Physics, Mechanics & Astronomy
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.01044655336.45 schema:affiliation grid-institutes:None
106 schema:familyName Fierro
107 schema:givenName Annalisa
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044655336.45
109 rdf:type schema:Person
110 sg:person.01227217136.16 schema:affiliation grid-institutes:None
111 schema:familyName Coniglio
112 schema:givenName Antonio
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
114 rdf:type schema:Person
115 sg:person.01231027712.80 schema:affiliation grid-institutes:grid.4691.a
116 schema:familyName de Candia
117 schema:givenName Antonio
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231027712.80
119 rdf:type schema:Person
120 sg:pub.10.1007/bf01312829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015257076
121 https://doi.org/10.1007/bf01312829
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/srep26481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025213196
124 https://doi.org/10.1038/srep26481
125 rdf:type schema:CreativeWork
126 sg:pub.10.1140/epjst/e2014-02265-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007040749
127 https://doi.org/10.1140/epjst/e2014-02265-0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1140/epjst/e2016-60175-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084226676
130 https://doi.org/10.1140/epjst/e2016-60175-x
131 rdf:type schema:CreativeWork
132 grid-institutes:None schema:alternateName CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy
133 schema:name CNR-SPIN, c/o Complesso di Monte S. Angelo, 80126, Napoli, Italy
134 rdf:type schema:Organization
135 grid-institutes:grid.4691.a schema:alternateName Dipartimento di Fisica “Pancini”, Università di Napoli “Federico II”, Complesso di Monte S. Angelo, 80126, Napoli, Italy
136 schema:name Dipartimento di Fisica “Pancini”, Università di Napoli “Federico II”, Complesso di Monte S. Angelo, 80126, Napoli, Italy
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...