Parameter vertex method and its parallel solution for evaluating the dynamic response bounds of structures with interval parameters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

ZhiPing Qiu, PengBo Wang

ABSTRACT

In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice, thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method. The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint. To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing. More... »

PAGES

064612

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-017-9164-6

DOI

http://dx.doi.org/10.1007/s11433-017-9164-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103158542


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "ZhiPing", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "PengBo", 
        "id": "sg:person.016023571655.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023571655.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1108/ec-04-2015-0103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000703404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-874x(99)00029-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004017323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-008-0223-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004753274", 
          "https://doi.org/10.1007/s10409-008-0223-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-008-0223-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004753274", 
          "https://doi.org/10.1007/s10409-008-0223-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1010209618", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0249-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010209618", 
          "https://doi.org/10.1007/978-1-4471-0249-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0249-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010209618", 
          "https://doi.org/10.1007/978-1-4471-0249-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17415977.2014.993979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010488424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0207(19981015)43:3<391::aid-nme417>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013641436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0207(19981015)43:3<391::aid-nme417>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013641436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013818383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018491478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2008.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019266240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0296(90)90032-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020475051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0296(90)90032-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020475051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2007.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(00)00143-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021430437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-013-0969-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023671531", 
          "https://doi.org/10.1007/s00707-013-0969-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00707-015-1379-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023968942", 
          "https://doi.org/10.1007/s00707-015-1379-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2010.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029781979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-874x(97)00005-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030224151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2013.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030669310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2008.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-016-0329-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036488172", 
          "https://doi.org/10.1007/s11433-016-0329-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-016-0329-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036488172", 
          "https://doi.org/10.1007/s11433-016-0329-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.3083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9780203215449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037819767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2011.06.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038916636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03601217208905333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046805301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2009.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047130167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-016-0594-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049335283", 
          "https://doi.org/10.1007/s10409-016-0594-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-016-0594-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049335283", 
          "https://doi.org/10.1007/s10409-016-0594-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(87)90114-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051177406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/545498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052672095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2888303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062089622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3098998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062101246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.5523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083698090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218396x17500096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084227214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-017-9068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090851976", 
          "https://doi.org/10.1007/s11433-017-9068-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-017-9068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090851976", 
          "https://doi.org/10.1007/s11433-017-9068-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2017.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091410831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556260"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice, thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method. The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint. To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11433-017-9164-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Parameter vertex method and its parallel solution for evaluating the dynamic response bounds of structures with interval parameters", 
    "pagination": "064612", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de808d6eefca6b85925b576af44392dae30e335f0c5771b4b45b689d8bc7db47"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-017-9164-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103158542"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-017-9164-6", 
      "https://app.dimensions.ai/details/publication/pub.1103158542"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112064_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11433-017-9164-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-017-9164-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-017-9164-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-017-9164-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-017-9164-6'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-017-9164-6 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N430fe98a391346da9bd45f1eda1e9585
4 schema:citation sg:pub.10.1007/978-1-4471-0249-6
5 sg:pub.10.1007/s00707-013-0969-0
6 sg:pub.10.1007/s00707-015-1379-2
7 sg:pub.10.1007/s10409-008-0223-5
8 sg:pub.10.1007/s10409-016-0594-y
9 sg:pub.10.1007/s11433-016-0329-3
10 sg:pub.10.1007/s11433-017-9068-5
11 https://app.dimensions.ai/details/publication/pub.1010209618
12 https://doi.org/10.1002/(sici)1097-0207(19981015)43:3<391::aid-nme417>3.0.co;2-j
13 https://doi.org/10.1002/nme.2298
14 https://doi.org/10.1002/nme.281
15 https://doi.org/10.1002/nme.3083
16 https://doi.org/10.1002/nme.5523
17 https://doi.org/10.1016/0045-7825(94)90043-4
18 https://doi.org/10.1016/0141-0296(90)90032-n
19 https://doi.org/10.1016/0165-0114(87)90114-x
20 https://doi.org/10.1016/j.cma.2007.06.022
21 https://doi.org/10.1016/j.cma.2008.11.007
22 https://doi.org/10.1016/j.cma.2009.06.018
23 https://doi.org/10.1016/j.cma.2010.07.019
24 https://doi.org/10.1016/j.cma.2013.03.021
25 https://doi.org/10.1016/j.cma.2017.08.023
26 https://doi.org/10.1016/j.compstruc.2008.10.001
27 https://doi.org/10.1016/j.mcm.2011.06.060
28 https://doi.org/10.1016/s0020-7683(03)00282-8
29 https://doi.org/10.1016/s0045-7949(00)00143-7
30 https://doi.org/10.1016/s0168-874x(97)00005-x
31 https://doi.org/10.1016/s0168-874x(99)00029-3
32 https://doi.org/10.1080/03601217208905333
33 https://doi.org/10.1080/17415977.2014.993979
34 https://doi.org/10.1108/ec-04-2015-0103
35 https://doi.org/10.1115/1.2888303
36 https://doi.org/10.1115/1.3098998
37 https://doi.org/10.1137/1.9781611970906
38 https://doi.org/10.1142/s0218396x17500096
39 https://doi.org/10.1155/2015/545498
40 https://doi.org/10.2514/2.164
41 https://doi.org/10.4324/9780203215449
42 schema:datePublished 2018-06
43 schema:datePublishedReg 2018-06-01
44 schema:description In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice, thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method. The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint. To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N06637871dfd44e90bc338f10edc036b4
49 N720118dde9104c6782cd77c0cff79ad3
50 sg:journal.1282972
51 schema:name Parameter vertex method and its parallel solution for evaluating the dynamic response bounds of structures with interval parameters
52 schema:pagination 064612
53 schema:productId N2c9aaf3af2a34494b5b06e002b4adb70
54 N32f93ebd99f9417ab5ff3cca4bbab5b1
55 N573b2e204e464e29a7df1a3f4827ac5f
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103158542
57 https://doi.org/10.1007/s11433-017-9164-6
58 schema:sdDatePublished 2019-04-11T13:05
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N2b0b82fc77e6495eb0523f48b1b0afc3
61 schema:url https://link.springer.com/10.1007%2Fs11433-017-9164-6
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N06637871dfd44e90bc338f10edc036b4 schema:issueNumber 6
66 rdf:type schema:PublicationIssue
67 N2b0b82fc77e6495eb0523f48b1b0afc3 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N2c9aaf3af2a34494b5b06e002b4adb70 schema:name readcube_id
70 schema:value de808d6eefca6b85925b576af44392dae30e335f0c5771b4b45b689d8bc7db47
71 rdf:type schema:PropertyValue
72 N32f93ebd99f9417ab5ff3cca4bbab5b1 schema:name dimensions_id
73 schema:value pub.1103158542
74 rdf:type schema:PropertyValue
75 N430fe98a391346da9bd45f1eda1e9585 rdf:first sg:person.014412456557.05
76 rdf:rest Na00e9b15a59941208c3694298e526f68
77 N573b2e204e464e29a7df1a3f4827ac5f schema:name doi
78 schema:value 10.1007/s11433-017-9164-6
79 rdf:type schema:PropertyValue
80 N720118dde9104c6782cd77c0cff79ad3 schema:volumeNumber 61
81 rdf:type schema:PublicationVolume
82 Na00e9b15a59941208c3694298e526f68 rdf:first sg:person.016023571655.00
83 rdf:rest rdf:nil
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
88 schema:name Computation Theory and Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1282972 schema:issn 1674-7348
91 1869-1927
92 schema:name Science China Physics, Mechanics & Astronomy
93 rdf:type schema:Periodical
94 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
95 schema:familyName Qiu
96 schema:givenName ZhiPing
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
98 rdf:type schema:Person
99 sg:person.016023571655.00 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
100 schema:familyName Wang
101 schema:givenName PengBo
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023571655.00
103 rdf:type schema:Person
104 sg:pub.10.1007/978-1-4471-0249-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010209618
105 https://doi.org/10.1007/978-1-4471-0249-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00707-013-0969-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023671531
108 https://doi.org/10.1007/s00707-013-0969-0
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00707-015-1379-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023968942
111 https://doi.org/10.1007/s00707-015-1379-2
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10409-008-0223-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004753274
114 https://doi.org/10.1007/s10409-008-0223-5
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10409-016-0594-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049335283
117 https://doi.org/10.1007/s10409-016-0594-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11433-016-0329-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036488172
120 https://doi.org/10.1007/s11433-016-0329-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11433-017-9068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090851976
123 https://doi.org/10.1007/s11433-017-9068-5
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1010209618 schema:CreativeWork
126 https://doi.org/10.1002/(sici)1097-0207(19981015)43:3<391::aid-nme417>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1013641436
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/nme.2298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018491478
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/nme.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016799781
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/nme.3083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928369
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/nme.5523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698090
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0045-7825(94)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036381509
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0141-0296(90)90032-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1020475051
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0165-0114(87)90114-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051177406
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.cma.2007.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021129018
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cma.2008.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613598
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cma.2009.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047130167
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.cma.2010.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029781979
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cma.2013.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030669310
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cma.2017.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091410831
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.compstruc.2008.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019266240
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.mcm.2011.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038916636
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0020-7683(03)00282-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035941935
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0045-7949(00)00143-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021430437
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0168-874x(97)00005-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030224151
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0168-874x(99)00029-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004017323
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/03601217208905333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046805301
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1080/17415977.2014.993979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010488424
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1108/ec-04-2015-0103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000703404
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1115/1.2888303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062089622
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1115/1.3098998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101246
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1137/1.9781611970906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556260
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1142/s0218396x17500096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084227214
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1155/2015/545498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052672095
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2514/2.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013818383
183 rdf:type schema:CreativeWork
184 https://doi.org/10.4324/9780203215449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037819767
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
187 schema:name Institute of Solid Mechanics, Beihang University, 100191, Beijing, China
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...