Field-effect modulation of anomalous Hall effect in diluted ferromagnetic topological insulator epitaxial films View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03

AUTHORS

CuiZu Chang, MinHao Liu, ZuoCheng Zhang, YaYu Wang, Ke He, QiKun Xue

ABSTRACT

High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2–xCrxTe3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing carrier density. Carrier-independent ferromagnetism heralds Sb2–xCrxTe3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics. More... »

PAGES

637501

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-015-5761-9

DOI

http://dx.doi.org/10.1007/s11433-015-5761-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023044090


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China", 
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "Francis Bitter Magnet Lab, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "CuiZu", 
        "id": "sg:person.0660332004.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660332004.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "MinHao", 
        "id": "sg:person.01201004253.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201004253.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "ZuoCheng", 
        "id": "sg:person.01150766232.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150766232.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "YaYu", 
        "id": "sg:person.0635640376.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China", 
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Ke", 
        "id": "sg:person.01245570004.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245570004.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics", 
          "id": "https://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China", 
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "QiKun", 
        "id": "sg:person.01360601606.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360601606.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000736621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000736621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.3045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004083979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201203493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004799332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1234414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006904305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201000368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007721815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011911911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.066809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025983887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.066809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025983887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036329849", 
          "https://doi.org/10.1038/nature08916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036329849", 
          "https://doi.org/10.1038/nature08916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036898094", 
          "https://doi.org/10.1038/nphys1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037502472", 
          "https://doi.org/10.1038/nphys1689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037502472", 
          "https://doi.org/10.1038/nphys1689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-0060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046165277", 
          "https://doi.org/10.1007/s12274-010-0060-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-0060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046165277", 
          "https://doi.org/10.1007/s12274-010-0060-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1189924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047153219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1189924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047153219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5379.951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048702032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048863087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.195424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048863087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.165440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051787188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.165440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051787188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2362971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057852697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.1394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.146401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.146401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s2010324711000033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063028694"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2\u2013xCrxTe3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing carrier density. Carrier-independent ferromagnetism heralds Sb2\u2013xCrxTe3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11433-015-5761-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Field-effect modulation of anomalous Hall effect in diluted ferromagnetic topological insulator epitaxial films", 
    "pagination": "637501", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dc9721d5f11f27c4d66cf9eea3108ee3e7d33b97f93bbdfb25f40716a93ac93"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-015-5761-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023044090"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-015-5761-9", 
      "https://app.dimensions.ai/details/publication/pub.1023044090"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11433-015-5761-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5761-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5761-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5761-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5761-9'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-015-5761-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N95452a1265814d1caccfb259dc173bea
4 schema:citation sg:pub.10.1007/s12274-010-0060-2
5 sg:pub.10.1038/35050040
6 sg:pub.10.1038/nature08916
7 sg:pub.10.1038/nphys1270
8 sg:pub.10.1038/nphys1689
9 https://doi.org/10.1002/adma.201000368
10 https://doi.org/10.1002/adma.201203493
11 https://doi.org/10.1063/1.2362971
12 https://doi.org/10.1103/physrev.108.1394
13 https://doi.org/10.1103/physrevb.78.195424
14 https://doi.org/10.1103/physrevb.83.165440
15 https://doi.org/10.1103/physrevlett.103.146401
16 https://doi.org/10.1103/physrevlett.105.176602
17 https://doi.org/10.1103/physrevlett.108.066809
18 https://doi.org/10.1103/physrevlett.26.851
19 https://doi.org/10.1103/revmodphys.82.3045
20 https://doi.org/10.1103/revmodphys.83.1057
21 https://doi.org/10.1126/science.1167747
22 https://doi.org/10.1126/science.1187485
23 https://doi.org/10.1126/science.1189924
24 https://doi.org/10.1126/science.1234414
25 https://doi.org/10.1126/science.281.5379.951
26 https://doi.org/10.1142/s2010324711000033
27 schema:datePublished 2016-03
28 schema:datePublishedReg 2016-03-01
29 schema:description High quality chromium (Cr) doped three-dimensional topological insulator (TI) Sb2Te3 films are grown via molecular beam epitaxy on heat-treated insulating SrTiO3 (111) substrates. We report that the Dirac surface states are insensitive to Cr doping, and a perfect robust long-range ferromagnetic order is unveiled in epitaxial Sb2–xCrxTe3 films. The anomalous Hall effect is modulated by applying a bottom gate, contrary to the ferromagnetism in conventional diluted magnetic semiconductors (DMSs), here the coercivity field is not significantly changed with decreasing carrier density. Carrier-independent ferromagnetism heralds Sb2–xCrxTe3 films as the base candidate TI material to realize the quantum anomalous Hall (QAH) effect. These results also indicate the potential of controlling anomalous Hall voltage in future TI-based magneto-electronics and spintronics.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N12cb6404af6e48c0b7ef7a99f91f42c4
34 Ndb154923d58a474a8617d00af459ceb2
35 sg:journal.1282972
36 schema:name Field-effect modulation of anomalous Hall effect in diluted ferromagnetic topological insulator epitaxial films
37 schema:pagination 637501
38 schema:productId Nc00c66a1a699402e872ea1fd8556955b
39 Ncd7b753b874a4a07a3a577a15b92e250
40 Nd2dff8cb141c4e679e4945384d1f0baa
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023044090
42 https://doi.org/10.1007/s11433-015-5761-9
43 schema:sdDatePublished 2019-04-11T02:07
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N1f4b0ff84fb74d4b96ee9be69ba15cc8
46 schema:url http://link.springer.com/10.1007%2Fs11433-015-5761-9
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N12cb6404af6e48c0b7ef7a99f91f42c4 schema:issueNumber 3
51 rdf:type schema:PublicationIssue
52 N1f4b0ff84fb74d4b96ee9be69ba15cc8 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N790ef562b50f4cb5af6e96657b950e39 rdf:first sg:person.01201004253.90
55 rdf:rest Nd705728acb9045d0a0e402ad0e58b431
56 N95452a1265814d1caccfb259dc173bea rdf:first sg:person.0660332004.30
57 rdf:rest N790ef562b50f4cb5af6e96657b950e39
58 Nbe753420844248ed91c9d92dd7c19161 rdf:first sg:person.01360601606.21
59 rdf:rest rdf:nil
60 Nc00c66a1a699402e872ea1fd8556955b schema:name readcube_id
61 schema:value 6dc9721d5f11f27c4d66cf9eea3108ee3e7d33b97f93bbdfb25f40716a93ac93
62 rdf:type schema:PropertyValue
63 Ncd4bba3948fb443b9759bce690077de1 rdf:first sg:person.01245570004.12
64 rdf:rest Nbe753420844248ed91c9d92dd7c19161
65 Ncd7b753b874a4a07a3a577a15b92e250 schema:name doi
66 schema:value 10.1007/s11433-015-5761-9
67 rdf:type schema:PropertyValue
68 Nd2dff8cb141c4e679e4945384d1f0baa schema:name dimensions_id
69 schema:value pub.1023044090
70 rdf:type schema:PropertyValue
71 Nd705728acb9045d0a0e402ad0e58b431 rdf:first sg:person.01150766232.30
72 rdf:rest Nfc7ed20a225140648ed6173cf73dd3ac
73 Ndb154923d58a474a8617d00af459ceb2 schema:volumeNumber 59
74 rdf:type schema:PublicationVolume
75 Nfc7ed20a225140648ed6173cf73dd3ac rdf:first sg:person.0635640376.17
76 rdf:rest Ncd4bba3948fb443b9759bce690077de1
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
81 schema:name Materials Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1282972 schema:issn 1674-7348
84 1869-1927
85 schema:name Science China Physics, Mechanics & Astronomy
86 rdf:type schema:Periodical
87 sg:person.01150766232.30 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
88 schema:familyName Zhang
89 schema:givenName ZuoCheng
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150766232.30
91 rdf:type schema:Person
92 sg:person.01201004253.90 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
93 schema:familyName Liu
94 schema:givenName MinHao
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201004253.90
96 rdf:type schema:Person
97 sg:person.01245570004.12 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
98 schema:familyName He
99 schema:givenName Ke
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245570004.12
101 rdf:type schema:Person
102 sg:person.01360601606.21 schema:affiliation https://www.grid.ac/institutes/grid.458438.6
103 schema:familyName Xue
104 schema:givenName QiKun
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360601606.21
106 rdf:type schema:Person
107 sg:person.0635640376.17 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
108 schema:familyName Wang
109 schema:givenName YaYu
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17
111 rdf:type schema:Person
112 sg:person.0660332004.30 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
113 schema:familyName Chang
114 schema:givenName CuiZu
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660332004.30
116 rdf:type schema:Person
117 sg:pub.10.1007/s12274-010-0060-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046165277
118 https://doi.org/10.1007/s12274-010-0060-2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/35050040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006678613
121 https://doi.org/10.1038/35050040
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature08916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036329849
124 https://doi.org/10.1038/nature08916
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nphys1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036898094
127 https://doi.org/10.1038/nphys1270
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nphys1689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037502472
130 https://doi.org/10.1038/nphys1689
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/adma.201000368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007721815
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/adma.201203493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004799332
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.2362971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057852697
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrev.108.1394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419550
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.78.195424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048863087
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.83.165440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051787188
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.103.146401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756084
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.105.176602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000736621
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.108.066809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025983887
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.26.851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774737
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/revmodphys.82.3045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004083979
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.1167747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011911911
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.1187485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461610
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1189924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047153219
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1234414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006904305
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.281.5379.951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048702032
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1142/s2010324711000033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063028694
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
169 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
170 Francis Bitter Magnet Lab, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
171 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
174 schema:name State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.458438.6 schema:alternateName Institute of Physics
177 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
178 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, 100084, Beijing, China
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...