An accurate determination of the Hubble constant from baryon acoustic oscillation datasets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Cheng Cheng, QingGuo Huang

ABSTRACT

Even though the Hubble constant cannot be significantly determined just by the low-redshift Baryon Acoustic Oscillation (BAO) data, it can be tightly constrained once the high-redshift BAO data are combined. We combined BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and z = 2.34 from BOSS DR11 quasar Lyman-α forest lines to get H0 = 68.17-1.56+1.55 km s-1 Mpc-1. In addition, we adopted the simultaneous measurements of H(z) and DA(z) from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample to obtain H0 = (68.11 ± 1.69) km s-1 Mpc-1. Finally, combining all of the BAO datasets, we conclude that H0 = (68.11 ± 0.86) km s-1 Mpc-1, a 1.3% determination. More... »

PAGES

599801

References to SciGraph publications

  • 2014-02. A possible resolution of tension between Planck and Type Ia supernova observations in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • 2014-08. Investigating the possibility of a turning point in the dark energy equation of state in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • 2014-09. Cosmological evolution of quintessence with a sign-changing interaction in dark sector in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • 2014-05. Constrains on f(T) gravity with the strong gravitational lensing data in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11433-015-5684-5

    DOI

    http://dx.doi.org/10.1007/s11433-015-5684-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041310188


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
                "University of the Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Cheng", 
            "id": "sg:person.012712256621.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712256621.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.486497.0", 
              "name": [
                "State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "QingGuo", 
            "id": "sg:person.013021320667.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013021320667.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/mnras/stt357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000625427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.15.3.168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015163949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2966.2011.19250.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020807203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-013-5373-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021771694", 
              "https://doi.org/10.1007/s11433-013-5373-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0067-0049/208/2/19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026911776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0004-637x/730/2/119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032001595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-014-5497-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033044846", 
              "https://doi.org/10.1007/s11433-014-5497-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361/201321591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034796299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-013-5302-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041582630", 
              "https://doi.org/10.1007/s11433-013-5302-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/320638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041787066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-014-5550-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045871175", 
              "https://doi.org/10.1007/s11433-014-5550-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2966.2012.21565.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047879018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0004-637x/746/1/85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049998824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0004-637x/794/2/135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053415276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361/201423969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056922060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/305424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058612946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/466512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058751163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/466512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058751163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stt1290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059912323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stu1997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059914631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stu278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059915431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stu523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059915670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218271801000822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062967387"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-09", 
        "datePublishedReg": "2015-09-01", 
        "description": "Even though the Hubble constant cannot be significantly determined just by the low-redshift Baryon Acoustic Oscillation (BAO) data, it can be tightly constrained once the high-redshift BAO data are combined. We combined BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and z = 2.34 from BOSS DR11 quasar Lyman-\u03b1 forest lines to get H0 = 68.17-1.56+1.55 km s-1 Mpc-1. In addition, we adopted the simultaneous measurements of H(z) and DA(z) from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample to obtain H0 = (68.11 \u00b1 1.69) km s-1 Mpc-1. Finally, combining all of the BAO datasets, we conclude that H0 = (68.11 \u00b1 0.86) km s-1 Mpc-1, a 1.3% determination.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11433-015-5684-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1282972", 
            "issn": [
              "1674-7348", 
              "1869-1927"
            ], 
            "name": "Science China Physics, Mechanics & Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "name": "An accurate determination of the Hubble constant from baryon acoustic oscillation datasets", 
        "pagination": "599801", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c4ca2c32155b11fbde3c308587c14cd6a25c381400e655feb39a16fdc7d97df0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11433-015-5684-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041310188"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11433-015-5684-5", 
          "https://app.dimensions.ai/details/publication/pub.1041310188"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000523.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11433-015-5684-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5684-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5684-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5684-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-015-5684-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11433-015-5684-5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc10201991d3b4e0abfe97dadadf591de
    4 schema:citation sg:pub.10.1007/s11433-013-5302-3
    5 sg:pub.10.1007/s11433-013-5373-1
    6 sg:pub.10.1007/s11433-014-5497-y
    7 sg:pub.10.1007/s11433-014-5550-x
    8 https://doi.org/10.1051/0004-6361/201321591
    9 https://doi.org/10.1051/0004-6361/201423969
    10 https://doi.org/10.1073/pnas.15.3.168
    11 https://doi.org/10.1086/305424
    12 https://doi.org/10.1086/320638
    13 https://doi.org/10.1086/466512
    14 https://doi.org/10.1088/0004-637x/730/2/119
    15 https://doi.org/10.1088/0004-637x/746/1/85
    16 https://doi.org/10.1088/0004-637x/794/2/135
    17 https://doi.org/10.1088/0067-0049/208/2/19
    18 https://doi.org/10.1093/mnras/stt1290
    19 https://doi.org/10.1093/mnras/stt357
    20 https://doi.org/10.1093/mnras/stu1997
    21 https://doi.org/10.1093/mnras/stu278
    22 https://doi.org/10.1093/mnras/stu523
    23 https://doi.org/10.1111/j.1365-2966.2011.19250.x
    24 https://doi.org/10.1111/j.1365-2966.2012.21565.x
    25 https://doi.org/10.1142/s0218271801000822
    26 schema:datePublished 2015-09
    27 schema:datePublishedReg 2015-09-01
    28 schema:description Even though the Hubble constant cannot be significantly determined just by the low-redshift Baryon Acoustic Oscillation (BAO) data, it can be tightly constrained once the high-redshift BAO data are combined. We combined BAO data from 6dFGS, BOSS DR11 clustering of galaxies, WiggleZ and z = 2.34 from BOSS DR11 quasar Lyman-α forest lines to get H0 = 68.17-1.56+1.55 km s-1 Mpc-1. In addition, we adopted the simultaneous measurements of H(z) and DA(z) from the two-dimensional two-point correlation function from BOSS DR9 CMASS sample and two-dimensional matter power spectrum from SDSS DR7 sample to obtain H0 = (68.11 ± 1.69) km s-1 Mpc-1. Finally, combining all of the BAO datasets, we conclude that H0 = (68.11 ± 0.86) km s-1 Mpc-1, a 1.3% determination.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N3ed72600237c4f5584f2cabdb40eb2e8
    33 Nd5a974c297f142c6965c6dfe63b3fa87
    34 sg:journal.1282972
    35 schema:name An accurate determination of the Hubble constant from baryon acoustic oscillation datasets
    36 schema:pagination 599801
    37 schema:productId N4319e70a06fe44ce8bbe9d7738cb1b1c
    38 N97bbfebedae641c28cea880006b81c78
    39 Nfe55f95839d34c28a88281903b374c2d
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041310188
    41 https://doi.org/10.1007/s11433-015-5684-5
    42 schema:sdDatePublished 2019-04-10T19:11
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nda7bc7321e5840bbb5e7ae408d7c0e70
    45 schema:url http://link.springer.com/10.1007%2Fs11433-015-5684-5
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N3ed72600237c4f5584f2cabdb40eb2e8 schema:volumeNumber 58
    50 rdf:type schema:PublicationVolume
    51 N4319e70a06fe44ce8bbe9d7738cb1b1c schema:name dimensions_id
    52 schema:value pub.1041310188
    53 rdf:type schema:PropertyValue
    54 N7a6298dba8f64824aed9b254884e1f49 rdf:first sg:person.013021320667.75
    55 rdf:rest rdf:nil
    56 N97bbfebedae641c28cea880006b81c78 schema:name readcube_id
    57 schema:value c4ca2c32155b11fbde3c308587c14cd6a25c381400e655feb39a16fdc7d97df0
    58 rdf:type schema:PropertyValue
    59 Nc10201991d3b4e0abfe97dadadf591de rdf:first sg:person.012712256621.33
    60 rdf:rest N7a6298dba8f64824aed9b254884e1f49
    61 Nd5a974c297f142c6965c6dfe63b3fa87 schema:issueNumber 9
    62 rdf:type schema:PublicationIssue
    63 Nda7bc7321e5840bbb5e7ae408d7c0e70 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nfe55f95839d34c28a88281903b374c2d schema:name doi
    66 schema:value 10.1007/s11433-015-5684-5
    67 rdf:type schema:PropertyValue
    68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Information and Computing Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Artificial Intelligence and Image Processing
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1282972 schema:issn 1674-7348
    75 1869-1927
    76 schema:name Science China Physics, Mechanics & Astronomy
    77 rdf:type schema:Periodical
    78 sg:person.012712256621.33 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    79 schema:familyName Cheng
    80 schema:givenName Cheng
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712256621.33
    82 rdf:type schema:Person
    83 sg:person.013021320667.75 schema:affiliation https://www.grid.ac/institutes/grid.486497.0
    84 schema:familyName Huang
    85 schema:givenName QingGuo
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013021320667.75
    87 rdf:type schema:Person
    88 sg:pub.10.1007/s11433-013-5302-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041582630
    89 https://doi.org/10.1007/s11433-013-5302-3
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s11433-013-5373-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021771694
    92 https://doi.org/10.1007/s11433-013-5373-1
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s11433-014-5497-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033044846
    95 https://doi.org/10.1007/s11433-014-5497-y
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s11433-014-5550-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045871175
    98 https://doi.org/10.1007/s11433-014-5550-x
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1051/0004-6361/201321591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034796299
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1051/0004-6361/201423969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056922060
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1073/pnas.15.3.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015163949
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1086/305424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058612946
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1086/320638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041787066
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1086/466512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058751163
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1088/0004-637x/730/2/119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032001595
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1088/0004-637x/746/1/85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049998824
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1088/0004-637x/794/2/135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053415276
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1088/0067-0049/208/2/19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026911776
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1093/mnras/stt1290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059912323
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1093/mnras/stt357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000625427
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1093/mnras/stu1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059914631
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1093/mnras/stu278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059915431
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1093/mnras/stu523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059915670
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1111/j.1365-2966.2011.19250.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020807203
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1111/j.1365-2966.2012.21565.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047879018
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1142/s0218271801000822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062967387
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
    137 schema:name State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China
    138 University of the Chinese Academy of Sciences, 100190, Beijing, China
    139 rdf:type schema:Organization
    140 https://www.grid.ac/institutes/grid.486497.0 schema:alternateName Institute of Theoretical Physics
    141 schema:name State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...