A collocation reliability analysis method for probabilistic and fuzzy mixed variables View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07

AUTHORS

MengHui Xu, ZhiPing Qiu

ABSTRACT

The main bottleneck of the reliability analysis of structures with aleatory and epistemic uncertainties is the contradiction between the accuracy requirement and computational efforts. Existing methods are either computationally unaffordable or with limited application scope. Accordingly, a new technique for capturing the minimal and maximal point vectors instead of the extremum of the function is developed and thus a novel reliability analysis method for probabilistic and fuzzy mixed variables is proposed. The fuzziness propagation in the random reliability, which is the focus of the present study, is performed by the proposed method, in which the minimal and maximal point vectors of the structural random reliability with respect to fuzzy variables are calculated dimension by dimension based on the Chebyshev orthogonal polynomial approximation. First-Order, Second-Moment (FOSM) method which can be replaced by its counterparts is utilized to calculate the structural random reliability. Both the accuracy and efficiency of the proposed method are validated by numerical examples and engineering applications introduced in the paper. More... »

PAGES

1318-1330

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-014-5446-9

DOI

http://dx.doi.org/10.1007/s11433-014-5446-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045079627


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "MengHui", 
        "id": "sg:person.016315030277.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315030277.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "ZhiPing", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-4730(87)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000465117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-4730(87)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000465117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0951-8320(97)86402-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002967829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/sme-120020293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014605328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(03)00147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018223838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(03)00147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018223838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020150330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-3183-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022283207", 
          "https://doi.org/10.1007/s11431-009-3183-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-3183-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022283207", 
          "https://doi.org/10.1007/s11431-009-3183-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2009.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025651295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-4730(97)00033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025755096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2002-1465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027991442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-4730(98)00023-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028915592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207540110095709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035397313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.3877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038078546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2007.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040657309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0951-8320(03)00058-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045808518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0951-8320(03)00058-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045808518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(87)90163-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051602974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1984)110:3(357)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057580906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1341)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057600297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.2000.10485979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058287914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2012.16.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071553435"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07", 
    "datePublishedReg": "2014-07-01", 
    "description": "The main bottleneck of the reliability analysis of structures with aleatory and epistemic uncertainties is the contradiction between the accuracy requirement and computational efforts. Existing methods are either computationally unaffordable or with limited application scope. Accordingly, a new technique for capturing the minimal and maximal point vectors instead of the extremum of the function is developed and thus a novel reliability analysis method for probabilistic and fuzzy mixed variables is proposed. The fuzziness propagation in the random reliability, which is the focus of the present study, is performed by the proposed method, in which the minimal and maximal point vectors of the structural random reliability with respect to fuzzy variables are calculated dimension by dimension based on the Chebyshev orthogonal polynomial approximation. First-Order, Second-Moment (FOSM) method which can be replaced by its counterparts is utilized to calculate the structural random reliability. Both the accuracy and efficiency of the proposed method are validated by numerical examples and engineering applications introduced in the paper.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11433-014-5446-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "A collocation reliability analysis method for probabilistic and fuzzy mixed variables", 
    "pagination": "1318-1330", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6ba93d034ddf8a2af74feb38b47a1e0f568a6804eea3b01119a08dfb5f19bba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-014-5446-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045079627"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-014-5446-9", 
      "https://app.dimensions.ai/details/publication/pub.1045079627"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11433-014-5446-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-014-5446-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-014-5446-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-014-5446-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-014-5446-9'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-014-5446-9 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author Neecc37c926354c4da70ccd5982de80b7
4 schema:citation sg:pub.10.1007/s11431-009-3183-5
5 https://doi.org/10.1016/0165-0114(87)90163-1
6 https://doi.org/10.1016/0167-4730(87)90002-6
7 https://doi.org/10.1016/j.ijmecsci.2007.09.015
8 https://doi.org/10.1016/j.strusafe.2009.02.001
9 https://doi.org/10.1016/s0045-7949(03)00147-0
10 https://doi.org/10.1016/s0167-4730(97)00033-7
11 https://doi.org/10.1016/s0167-4730(98)00023-x
12 https://doi.org/10.1016/s0951-8320(03)00058-9
13 https://doi.org/10.1016/s0951-8320(97)86402-2
14 https://doi.org/10.1061/(asce)0733-9399(1984)110:3(357)
15 https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1341)
16 https://doi.org/10.1080/00207540110095709
17 https://doi.org/10.1080/00401706.2000.10485979
18 https://doi.org/10.1081/sme-120020293
19 https://doi.org/10.2514/1.3877
20 https://doi.org/10.2514/2.599
21 https://doi.org/10.2514/6.2002-1465
22 https://doi.org/10.3901/jme.2012.16.184
23 schema:datePublished 2014-07
24 schema:datePublishedReg 2014-07-01
25 schema:description The main bottleneck of the reliability analysis of structures with aleatory and epistemic uncertainties is the contradiction between the accuracy requirement and computational efforts. Existing methods are either computationally unaffordable or with limited application scope. Accordingly, a new technique for capturing the minimal and maximal point vectors instead of the extremum of the function is developed and thus a novel reliability analysis method for probabilistic and fuzzy mixed variables is proposed. The fuzziness propagation in the random reliability, which is the focus of the present study, is performed by the proposed method, in which the minimal and maximal point vectors of the structural random reliability with respect to fuzzy variables are calculated dimension by dimension based on the Chebyshev orthogonal polynomial approximation. First-Order, Second-Moment (FOSM) method which can be replaced by its counterparts is utilized to calculate the structural random reliability. Both the accuracy and efficiency of the proposed method are validated by numerical examples and engineering applications introduced in the paper.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N16f026efef7b4d0fbd30d86ae0047b64
30 N3b312b8bdc2b4b80be8ae8de66f51df3
31 sg:journal.1282972
32 schema:name A collocation reliability analysis method for probabilistic and fuzzy mixed variables
33 schema:pagination 1318-1330
34 schema:productId N3df2657efb524671bcff104f0856f7b2
35 N9b924e76abe64f17a2cbaa39805ff94c
36 Nbc0fd3f8e95e4564904bd88cd93be5e7
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045079627
38 https://doi.org/10.1007/s11433-014-5446-9
39 schema:sdDatePublished 2019-04-10T19:11
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nec885b5ecc1a4908b69d0f572c0a1a49
42 schema:url http://link.springer.com/10.1007%2Fs11433-014-5446-9
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N16f026efef7b4d0fbd30d86ae0047b64 schema:volumeNumber 57
47 rdf:type schema:PublicationVolume
48 N2b8bb5f6169b4da88cc5f805d9fc7c56 rdf:first sg:person.014412456557.05
49 rdf:rest rdf:nil
50 N3b312b8bdc2b4b80be8ae8de66f51df3 schema:issueNumber 7
51 rdf:type schema:PublicationIssue
52 N3df2657efb524671bcff104f0856f7b2 schema:name dimensions_id
53 schema:value pub.1045079627
54 rdf:type schema:PropertyValue
55 N9b924e76abe64f17a2cbaa39805ff94c schema:name doi
56 schema:value 10.1007/s11433-014-5446-9
57 rdf:type schema:PropertyValue
58 Nbc0fd3f8e95e4564904bd88cd93be5e7 schema:name readcube_id
59 schema:value d6ba93d034ddf8a2af74feb38b47a1e0f568a6804eea3b01119a08dfb5f19bba
60 rdf:type schema:PropertyValue
61 Nec885b5ecc1a4908b69d0f572c0a1a49 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Neecc37c926354c4da70ccd5982de80b7 rdf:first sg:person.016315030277.62
64 rdf:rest N2b8bb5f6169b4da88cc5f805d9fc7c56
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
69 schema:name Civil Engineering
70 rdf:type schema:DefinedTerm
71 sg:journal.1282972 schema:issn 1674-7348
72 1869-1927
73 schema:name Science China Physics, Mechanics & Astronomy
74 rdf:type schema:Periodical
75 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
76 schema:familyName Qiu
77 schema:givenName ZhiPing
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
79 rdf:type schema:Person
80 sg:person.016315030277.62 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
81 schema:familyName Xu
82 schema:givenName MengHui
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315030277.62
84 rdf:type schema:Person
85 sg:pub.10.1007/s11431-009-3183-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022283207
86 https://doi.org/10.1007/s11431-009-3183-5
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0165-0114(87)90163-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051602974
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0167-4730(87)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000465117
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.ijmecsci.2007.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040657309
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.strusafe.2009.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025651295
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0045-7949(03)00147-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018223838
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0167-4730(97)00033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025755096
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0167-4730(98)00023-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028915592
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0951-8320(03)00058-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045808518
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0951-8320(97)86402-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002967829
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1061/(asce)0733-9399(1984)110:3(357) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057580906
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1341) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057600297
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/00207540110095709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035397313
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/00401706.2000.10485979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058287914
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1081/sme-120020293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014605328
115 rdf:type schema:CreativeWork
116 https://doi.org/10.2514/1.3877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038078546
117 rdf:type schema:CreativeWork
118 https://doi.org/10.2514/2.599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020150330
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2514/6.2002-1465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027991442
121 rdf:type schema:CreativeWork
122 https://doi.org/10.3901/jme.2012.16.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071553435
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
125 schema:name Institute of Solid Mechanics, Beihang University, 100191, Beijing, China
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...