Modified perturbation method for eigenvalues of structure with interval parameters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01

AUTHORS

Chong Wang, ZhiPing Qiu

ABSTRACT

In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms, a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters. In the proposed method, interval variables are used to quantitatively describe all the uncertain parameters. Different order perturbations in both eigenvalues and eigenvectors are fully considered. By retaining higher order terms, the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors. The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach. Compared with the Monte Carlo method, two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-013-5328-6

DOI

http://dx.doi.org/10.1007/s11433-013-5328-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005278586


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chong", 
        "id": "sg:person.012145241544.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012145241544.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beihang University, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "ZhiPing", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compstruc.2009.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003584159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2008.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006166623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-0779(95)00065-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006726945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2004.08.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013804605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013818383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2005.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014015218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542508040027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014241753", 
          "https://doi.org/10.1134/s0965542508040027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(92)90509-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017025022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7949(92)90509-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017025022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2008.11.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017275809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2004.02.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018364587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2006.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018873042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-011-0296-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020874199", 
          "https://doi.org/10.1007/s11590-011-0296-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2010.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024118874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2009.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025409780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2011.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027725658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11155-006-9024-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027912658", 
          "https://doi.org/10.1007/s11155-006-9024-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2009.08.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029680697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2012.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032572063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2008.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2010.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038241373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11155-006-9014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040746201", 
          "https://doi.org/10.1007/s11155-006-9014-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2011.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047526875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(96)01211-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050973357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-009-0455-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051300553", 
          "https://doi.org/10.1007/s00466-009-0455-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-009-0455-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051300553", 
          "https://doi.org/10.1007/s00466-009-0455-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02736398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051830324", 
          "https://doi.org/10.1007/bf02736398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02736398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051830324", 
          "https://doi.org/10.1007/bf02736398"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01", 
    "datePublishedReg": "2015-01-01", 
    "description": "In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms, a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters. In the proposed method, interval variables are used to quantitatively describe all the uncertain parameters. Different order perturbations in both eigenvalues and eigenvectors are fully considered. By retaining higher order terms, the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors. The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach. Compared with the Monte Carlo method, two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11433-013-5328-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Modified perturbation method for eigenvalues of structure with interval parameters", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "192645669563765994c30dd86487f9374f23866cddce3ac822357441b7a7ab3e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-013-5328-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005278586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-013-5328-6", 
      "https://app.dimensions.ai/details/publication/pub.1005278586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11433-013-5328-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-013-5328-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-013-5328-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-013-5328-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-013-5328-6'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-013-5328-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N257dbc4d010d4b24bf012746b79051f7
4 schema:citation sg:pub.10.1007/bf02736398
5 sg:pub.10.1007/s00466-009-0455-7
6 sg:pub.10.1007/s11155-006-9014-5
7 sg:pub.10.1007/s11155-006-9024-3
8 sg:pub.10.1007/s11590-011-0296-0
9 sg:pub.10.1134/s0965542508040027
10 https://doi.org/10.1016/0045-7949(92)90509-x
11 https://doi.org/10.1016/0960-0779(95)00065-8
12 https://doi.org/10.1016/j.cam.2009.08.086
13 https://doi.org/10.1016/j.cma.2008.11.007
14 https://doi.org/10.1016/j.compstruc.2006.10.012
15 https://doi.org/10.1016/j.compstruc.2009.02.009
16 https://doi.org/10.1016/j.compstruc.2009.11.003
17 https://doi.org/10.1016/j.engappai.2004.08.033
18 https://doi.org/10.1016/j.finel.2008.09.004
19 https://doi.org/10.1016/j.finel.2011.01.007
20 https://doi.org/10.1016/j.finel.2011.09.012
21 https://doi.org/10.1016/j.ijsolstr.2005.02.023
22 https://doi.org/10.1016/j.ins.2008.11.031
23 https://doi.org/10.1016/j.jsv.2004.02.051
24 https://doi.org/10.1016/j.jsv.2012.03.024
25 https://doi.org/10.1016/j.strusafe.2010.04.004
26 https://doi.org/10.1016/j.strusafe.2010.06.003
27 https://doi.org/10.1016/s0019-9958(65)90241-x
28 https://doi.org/10.1016/s0045-7825(96)01211-x
29 https://doi.org/10.2514/2.164
30 schema:datePublished 2015-01
31 schema:datePublishedReg 2015-01-01
32 schema:description In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms, a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters. In the proposed method, interval variables are used to quantitatively describe all the uncertain parameters. Different order perturbations in both eigenvalues and eigenvectors are fully considered. By retaining higher order terms, the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors. The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach. Compared with the Monte Carlo method, two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N71a51d06c2fe44d2b94640575bcd9df5
37 Nf2afdb72d4634d9b9b30cdb52d6a6dbe
38 sg:journal.1282972
39 schema:name Modified perturbation method for eigenvalues of structure with interval parameters
40 schema:pagination 1-9
41 schema:productId N63c10b7af8e34152ae816ddb259bf61b
42 N79b504bf90854ec0ba74569aff4d6a81
43 Nde6ebe719b6a4055a10abd92d64a3933
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005278586
45 https://doi.org/10.1007/s11433-013-5328-6
46 schema:sdDatePublished 2019-04-10T18:22
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Ne3ac7ac583b34764bf73ca93b07359c6
49 schema:url http://link.springer.com/10.1007%2Fs11433-013-5328-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N257dbc4d010d4b24bf012746b79051f7 rdf:first sg:person.012145241544.37
54 rdf:rest N83917bc6a11e4d4abf71f45af978200f
55 N63c10b7af8e34152ae816ddb259bf61b schema:name doi
56 schema:value 10.1007/s11433-013-5328-6
57 rdf:type schema:PropertyValue
58 N71a51d06c2fe44d2b94640575bcd9df5 schema:volumeNumber 58
59 rdf:type schema:PublicationVolume
60 N79b504bf90854ec0ba74569aff4d6a81 schema:name dimensions_id
61 schema:value pub.1005278586
62 rdf:type schema:PropertyValue
63 N83917bc6a11e4d4abf71f45af978200f rdf:first sg:person.014412456557.05
64 rdf:rest rdf:nil
65 Nde6ebe719b6a4055a10abd92d64a3933 schema:name readcube_id
66 schema:value 192645669563765994c30dd86487f9374f23866cddce3ac822357441b7a7ab3e
67 rdf:type schema:PropertyValue
68 Ne3ac7ac583b34764bf73ca93b07359c6 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nf2afdb72d4634d9b9b30cdb52d6a6dbe schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:journal.1282972 schema:issn 1674-7348
79 1869-1927
80 schema:name Science China Physics, Mechanics & Astronomy
81 rdf:type schema:Periodical
82 sg:person.012145241544.37 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
83 schema:familyName Wang
84 schema:givenName Chong
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012145241544.37
86 rdf:type schema:Person
87 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
88 schema:familyName Qiu
89 schema:givenName ZhiPing
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
91 rdf:type schema:Person
92 sg:pub.10.1007/bf02736398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051830324
93 https://doi.org/10.1007/bf02736398
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00466-009-0455-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300553
96 https://doi.org/10.1007/s00466-009-0455-7
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11155-006-9014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040746201
99 https://doi.org/10.1007/s11155-006-9014-5
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11155-006-9024-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027912658
102 https://doi.org/10.1007/s11155-006-9024-3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11590-011-0296-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020874199
105 https://doi.org/10.1007/s11590-011-0296-0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1134/s0965542508040027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014241753
108 https://doi.org/10.1134/s0965542508040027
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0045-7949(92)90509-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017025022
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0960-0779(95)00065-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006726945
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.cam.2009.08.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029680697
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.cma.2008.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613598
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.compstruc.2006.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018873042
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compstruc.2009.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003584159
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.compstruc.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025409780
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.engappai.2004.08.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013804605
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.finel.2008.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006166623
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.finel.2011.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027725658
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.finel.2011.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047526875
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijsolstr.2005.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014015218
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ins.2008.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017275809
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jsv.2004.02.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018364587
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jsv.2012.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032572063
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.strusafe.2010.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024118874
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.strusafe.2010.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038241373
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0045-7825(96)01211-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050973357
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2514/2.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013818383
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
151 schema:name Institute of Solid Mechanics, Beihang University, 100191, Beijing, China
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...