Toward an ideal electrical resistance strain gauge using a bare and single straight strand metallic glassy fiber View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03-01

AUTHORS

Jun Yi, LiShan Huo, DeQian Zhao, MinXiang Pan, HaiYang Bai, WeiHua Wang

ABSTRACT

Electrical resistance strain gauges (SGs) are useful tools for experimental stress analysis and the strain sensing elements in many electromechanical transducers including load cells, pressure transducers, torque meters, accelerometers, force cells, displacement transducers and so forth. The commonly used commercial crystalline strain sensing materials of SGs are in the form of wire or foil of which performance and reliability is not good enough due to their low electrical resistivity and incapacity to get thin thickness. Smaller SGs with single straight strand strain sensing materials, which are called ideal SG, are highly desirable for more than seven decades since the first SG was invented. Here, we show the development of a type of minuscule length scale strain gauge by using a bare and single straight strand metallic glassy fiber (MGF) with high resistivity, much smaller lengthscale, high elastic limits (2.16%) and especially the super piezoresistance effect. We anticipate that our metallic glassy fiber strain gauge (MGFSG), which moves toward the ideal SGs, would have wide applications for electromechanical transducers and stress analysis and catalyze development of more micro-and nanoscale metallic glass applications. More... »

PAGES

609-613

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-012-4671-3

DOI

http://dx.doi.org/10.1007/s11433-012-4671-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001841396


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Jun", 
        "id": "sg:person.015653520655.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015653520655.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huo", 
        "givenName": "LiShan", 
        "id": "sg:person.012463736507.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463736507.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "DeQian", 
        "id": "sg:person.010367253007.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367253007.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "MinXiang", 
        "id": "sg:person.015263741275.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263741275.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "HaiYang", 
        "id": "sg:person.0640310271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "WeiHua", 
        "id": "sg:person.011433524521.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433524521.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1111/j.1747-1567.2001.tb00011.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053742943", 
          "https://doi.org/10.1111/j.1747-1567.2001.tb00011.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1747-1567.1990.tb01474.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026232911", 
          "https://doi.org/10.1111/j.1747-1567.1990.tb01474.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-09511-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093454", 
          "https://doi.org/10.1007/978-0-387-09511-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03-01", 
    "datePublishedReg": "2012-03-01", 
    "description": "Electrical resistance strain gauges (SGs) are useful tools for experimental stress analysis and the strain sensing elements in many electromechanical transducers including load cells, pressure transducers, torque meters, accelerometers, force cells, displacement transducers and so forth. The commonly used commercial crystalline strain sensing materials of SGs are in the form of wire or foil of which performance and reliability is not good enough due to their low electrical resistivity and incapacity to get thin thickness. Smaller SGs with single straight strand strain sensing materials, which are called ideal SG, are highly desirable for more than seven decades since the first SG was invented. Here, we show the development of a type of minuscule length scale strain gauge by using a bare and single straight strand metallic glassy fiber (MGF) with high resistivity, much smaller lengthscale, high elastic limits (2.16%) and especially the super piezoresistance effect. We anticipate that our metallic glassy fiber strain gauge (MGFSG), which moves toward the ideal SGs, would have wide applications for electromechanical transducers and stress analysis and catalyze development of more micro-and nanoscale metallic glass applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11433-012-4671-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "metallic glassy fibers", 
      "strain gauges", 
      "electromechanical transducers", 
      "stress analysis", 
      "electrical resistance strain gauges", 
      "glassy fibers", 
      "high elastic limit", 
      "resistance strain gauges", 
      "low electrical resistivity", 
      "experimental stress analysis", 
      "form of wires", 
      "thin thickness", 
      "elastic limit", 
      "torque meter", 
      "load cell", 
      "high resistivity", 
      "glass applications", 
      "displacement transducer", 
      "electrical resistivity", 
      "piezoresistance effect", 
      "pressure transducer", 
      "electrical resistance", 
      "small lengthscales", 
      "resistivity", 
      "transducer", 
      "gauge", 
      "wide application", 
      "materials", 
      "fibers", 
      "foil", 
      "applications", 
      "wire", 
      "lengthscale", 
      "thickness", 
      "forces cells", 
      "accelerometer", 
      "meters", 
      "crystalline", 
      "performance", 
      "reliability", 
      "small SGs", 
      "SG", 
      "resistance", 
      "strains", 
      "elements", 
      "analysis", 
      "limit", 
      "useful tool", 
      "development", 
      "effect", 
      "tool", 
      "types", 
      "form", 
      "cells", 
      "decades", 
      "incapacity"
    ], 
    "name": "Toward an ideal electrical resistance strain gauge using a bare and single straight strand metallic glassy fiber", 
    "pagination": "609-613", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001841396"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-012-4671-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-012-4671-3", 
      "https://app.dimensions.ai/details/publication/pub.1001841396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_563.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11433-012-4671-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-012-4671-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-012-4671-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-012-4671-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-012-4671-3'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      83 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-012-4671-3 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Nd7ee1cc38267429985cb3114b39eed7c
4 schema:citation sg:pub.10.1007/978-0-387-09511-0
5 sg:pub.10.1111/j.1747-1567.1990.tb01474.x
6 sg:pub.10.1111/j.1747-1567.2001.tb00011.x
7 schema:datePublished 2012-03-01
8 schema:datePublishedReg 2012-03-01
9 schema:description Electrical resistance strain gauges (SGs) are useful tools for experimental stress analysis and the strain sensing elements in many electromechanical transducers including load cells, pressure transducers, torque meters, accelerometers, force cells, displacement transducers and so forth. The commonly used commercial crystalline strain sensing materials of SGs are in the form of wire or foil of which performance and reliability is not good enough due to their low electrical resistivity and incapacity to get thin thickness. Smaller SGs with single straight strand strain sensing materials, which are called ideal SG, are highly desirable for more than seven decades since the first SG was invented. Here, we show the development of a type of minuscule length scale strain gauge by using a bare and single straight strand metallic glassy fiber (MGF) with high resistivity, much smaller lengthscale, high elastic limits (2.16%) and especially the super piezoresistance effect. We anticipate that our metallic glassy fiber strain gauge (MGFSG), which moves toward the ideal SGs, would have wide applications for electromechanical transducers and stress analysis and catalyze development of more micro-and nanoscale metallic glass applications.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N4df3ce39aa834c6cb12d2fa467aea020
13 Na010cd71dcc44639bb1c4e5f82521d16
14 sg:journal.1282972
15 schema:keywords SG
16 accelerometer
17 analysis
18 applications
19 cells
20 crystalline
21 decades
22 development
23 displacement transducer
24 effect
25 elastic limit
26 electrical resistance
27 electrical resistance strain gauges
28 electrical resistivity
29 electromechanical transducers
30 elements
31 experimental stress analysis
32 fibers
33 foil
34 forces cells
35 form
36 form of wires
37 gauge
38 glass applications
39 glassy fibers
40 high elastic limit
41 high resistivity
42 incapacity
43 lengthscale
44 limit
45 load cell
46 low electrical resistivity
47 materials
48 metallic glassy fibers
49 meters
50 performance
51 piezoresistance effect
52 pressure transducer
53 reliability
54 resistance
55 resistance strain gauges
56 resistivity
57 small SGs
58 small lengthscales
59 strain gauges
60 strains
61 stress analysis
62 thickness
63 thin thickness
64 tool
65 torque meter
66 transducer
67 types
68 useful tool
69 wide application
70 wire
71 schema:name Toward an ideal electrical resistance strain gauge using a bare and single straight strand metallic glassy fiber
72 schema:pagination 609-613
73 schema:productId N5f7111896b4e4692b98b030b467e8582
74 N85a0bd93863d432ca04e21a788b53ce8
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001841396
76 https://doi.org/10.1007/s11433-012-4671-3
77 schema:sdDatePublished 2022-09-02T15:55
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N49d3aad9751a4378815c64f47cabbee5
80 schema:url https://doi.org/10.1007/s11433-012-4671-3
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0fedfb943f2c41938a0cda0f1650238e rdf:first sg:person.011433524521.36
85 rdf:rest rdf:nil
86 N110cb1d16dc5414fa7a322238e3d59a4 rdf:first sg:person.015263741275.85
87 rdf:rest Ncd060f240c134d88a0a36af3e8545fa2
88 N4305eada746947fabb9a927ece6a3cfc rdf:first sg:person.012463736507.51
89 rdf:rest Nc0d9d90d01f6464d9dcdbcb294ad70ed
90 N49d3aad9751a4378815c64f47cabbee5 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N4df3ce39aa834c6cb12d2fa467aea020 schema:volumeNumber 55
93 rdf:type schema:PublicationVolume
94 N5f7111896b4e4692b98b030b467e8582 schema:name doi
95 schema:value 10.1007/s11433-012-4671-3
96 rdf:type schema:PropertyValue
97 N85a0bd93863d432ca04e21a788b53ce8 schema:name dimensions_id
98 schema:value pub.1001841396
99 rdf:type schema:PropertyValue
100 Na010cd71dcc44639bb1c4e5f82521d16 schema:issueNumber 4
101 rdf:type schema:PublicationIssue
102 Nc0d9d90d01f6464d9dcdbcb294ad70ed rdf:first sg:person.010367253007.74
103 rdf:rest N110cb1d16dc5414fa7a322238e3d59a4
104 Ncd060f240c134d88a0a36af3e8545fa2 rdf:first sg:person.0640310271.16
105 rdf:rest N0fedfb943f2c41938a0cda0f1650238e
106 Nd7ee1cc38267429985cb3114b39eed7c rdf:first sg:person.015653520655.84
107 rdf:rest N4305eada746947fabb9a927ece6a3cfc
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
112 schema:name Astronomical and Space Sciences
113 rdf:type schema:DefinedTerm
114 sg:journal.1282972 schema:issn 1674-7348
115 1869-1927
116 schema:name Science China Physics, Mechanics & Astronomy
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.010367253007.74 schema:affiliation grid-institutes:grid.458438.6
120 schema:familyName Zhao
121 schema:givenName DeQian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367253007.74
123 rdf:type schema:Person
124 sg:person.011433524521.36 schema:affiliation grid-institutes:grid.458438.6
125 schema:familyName Wang
126 schema:givenName WeiHua
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433524521.36
128 rdf:type schema:Person
129 sg:person.012463736507.51 schema:affiliation grid-institutes:grid.458438.6
130 schema:familyName Huo
131 schema:givenName LiShan
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463736507.51
133 rdf:type schema:Person
134 sg:person.015263741275.85 schema:affiliation grid-institutes:grid.458438.6
135 schema:familyName Pan
136 schema:givenName MinXiang
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263741275.85
138 rdf:type schema:Person
139 sg:person.015653520655.84 schema:affiliation grid-institutes:grid.458438.6
140 schema:familyName Yi
141 schema:givenName Jun
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015653520655.84
143 rdf:type schema:Person
144 sg:person.0640310271.16 schema:affiliation grid-institutes:grid.458438.6
145 schema:familyName Bai
146 schema:givenName HaiYang
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16
148 rdf:type schema:Person
149 sg:pub.10.1007/978-0-387-09511-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022093454
150 https://doi.org/10.1007/978-0-387-09511-0
151 rdf:type schema:CreativeWork
152 sg:pub.10.1111/j.1747-1567.1990.tb01474.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026232911
153 https://doi.org/10.1111/j.1747-1567.1990.tb01474.x
154 rdf:type schema:CreativeWork
155 sg:pub.10.1111/j.1747-1567.2001.tb00011.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053742943
156 https://doi.org/10.1111/j.1747-1567.2001.tb00011.x
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
159 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...