A collocation interval analysis method for interval structural parameters and stochastic excitation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01

AUTHORS

WuChao Qi, ZhiPing Qiu

ABSTRACT

Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method. More... »

PAGES

66-77

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-011-4570-z

DOI

http://dx.doi.org/10.1007/s11433-011-4570-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003459603


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beijing University of Aeronautics and Astronautics, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "WuChao", 
        "id": "sg:person.013212712473.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212712473.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beihang University", 
          "id": "https://www.grid.ac/institutes/grid.64939.31", 
          "name": [
            "Institute of Solid Mechanics, Beijing University of Aeronautics and Astronautics, 100191, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "ZhiPing", 
        "id": "sg:person.014412456557.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10409-008-0223-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004753274", 
          "https://doi.org/10.1007/s10409-008-0223-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-008-0223-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004753274", 
          "https://doi.org/10.1007/s10409-008-0223-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.28307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006364228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2004-1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010927613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2005.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014015218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2011-1402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014523262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004660000214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015415354", 
          "https://doi.org/10.1007/s004660000214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2009.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016064433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019820524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1000-9361(08)60017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020782854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2006-2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021250141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(00)00143-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021430437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.1218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024303102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2004.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026354759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(03)00282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035941935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2008-1988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050951700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(01)00247-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051765877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2011-1846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051833526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052210171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0955-5986(01)00015-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052659191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3149532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062103573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2005.01.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071548843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556580"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01", 
    "datePublishedReg": "2012-01-01", 
    "description": "Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11433-011-4570-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "A collocation interval analysis method for interval structural parameters and stochastic excitation", 
    "pagination": "66-77", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "107aee6a2daca6a37803e7a567139652ce29aa0fe9eb146f8d66be4ad2dcbf83"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-011-4570-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003459603"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-011-4570-z", 
      "https://app.dimensions.ai/details/publication/pub.1003459603"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11433-011-4570-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-011-4570-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-011-4570-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-011-4570-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-011-4570-z'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-011-4570-z schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N94a998f2fb2c47ae911039e026197108
4 schema:citation sg:pub.10.1007/s004660000214
5 sg:pub.10.1007/s10409-008-0223-5
6 https://doi.org/10.1002/nme.1891
7 https://doi.org/10.1002/nme.281
8 https://doi.org/10.1002/nme.636
9 https://doi.org/10.1016/j.cma.2004.03.019
10 https://doi.org/10.1016/j.ijsolstr.2005.02.023
11 https://doi.org/10.1016/j.jsv.2009.09.019
12 https://doi.org/10.1016/s0020-7683(03)00282-8
13 https://doi.org/10.1016/s0045-7825(01)00247-x
14 https://doi.org/10.1016/s0045-7949(00)00143-7
15 https://doi.org/10.1016/s0955-5986(01)00015-2
16 https://doi.org/10.1016/s1000-9361(08)60017-5
17 https://doi.org/10.1115/1.3149532
18 https://doi.org/10.1137/1.9780898717716
19 https://doi.org/10.2514/1.28307
20 https://doi.org/10.2514/2.1218
21 https://doi.org/10.2514/6.2004-1992
22 https://doi.org/10.2514/6.2006-2003
23 https://doi.org/10.2514/6.2008-1988
24 https://doi.org/10.2514/6.2011-1402
25 https://doi.org/10.2514/6.2011-1846
26 https://doi.org/10.3901/jme.2005.01.145
27 schema:datePublished 2012-01
28 schema:datePublishedReg 2012-01-01
29 schema:description Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N8180569eee624268985d6b69290cfc30
34 Nc244e6911f164d7fb6da75e8840628a0
35 sg:journal.1282972
36 schema:name A collocation interval analysis method for interval structural parameters and stochastic excitation
37 schema:pagination 66-77
38 schema:productId N28906e9b3976458f9f6736ed3308d8c1
39 N4c88f8f48e9646679b6654ddbba82af2
40 Ncb749b43492a4104916e5212ef6e29f0
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003459603
42 https://doi.org/10.1007/s11433-011-4570-z
43 schema:sdDatePublished 2019-04-11T01:09
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N866ad31a419a4131878961fd57aca2bd
46 schema:url http://link.springer.com/10.1007%2Fs11433-011-4570-z
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N28906e9b3976458f9f6736ed3308d8c1 schema:name readcube_id
51 schema:value 107aee6a2daca6a37803e7a567139652ce29aa0fe9eb146f8d66be4ad2dcbf83
52 rdf:type schema:PropertyValue
53 N4c88f8f48e9646679b6654ddbba82af2 schema:name dimensions_id
54 schema:value pub.1003459603
55 rdf:type schema:PropertyValue
56 N77318795bd0547e48f6dea79ef21207d rdf:first sg:person.014412456557.05
57 rdf:rest rdf:nil
58 N8180569eee624268985d6b69290cfc30 schema:volumeNumber 55
59 rdf:type schema:PublicationVolume
60 N866ad31a419a4131878961fd57aca2bd schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N94a998f2fb2c47ae911039e026197108 rdf:first sg:person.013212712473.38
63 rdf:rest N77318795bd0547e48f6dea79ef21207d
64 Nc244e6911f164d7fb6da75e8840628a0 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 Ncb749b43492a4104916e5212ef6e29f0 schema:name doi
67 schema:value 10.1007/s11433-011-4570-z
68 rdf:type schema:PropertyValue
69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
70 schema:name Engineering
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
73 schema:name Civil Engineering
74 rdf:type schema:DefinedTerm
75 sg:journal.1282972 schema:issn 1674-7348
76 1869-1927
77 schema:name Science China Physics, Mechanics & Astronomy
78 rdf:type schema:Periodical
79 sg:person.013212712473.38 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
80 schema:familyName Qi
81 schema:givenName WuChao
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212712473.38
83 rdf:type schema:Person
84 sg:person.014412456557.05 schema:affiliation https://www.grid.ac/institutes/grid.64939.31
85 schema:familyName Qiu
86 schema:givenName ZhiPing
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412456557.05
88 rdf:type schema:Person
89 sg:pub.10.1007/s004660000214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415354
90 https://doi.org/10.1007/s004660000214
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10409-008-0223-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004753274
93 https://doi.org/10.1007/s10409-008-0223-5
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/nme.1891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019820524
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/nme.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016799781
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1002/nme.636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052210171
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.cma.2004.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026354759
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ijsolstr.2005.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014015218
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jsv.2009.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016064433
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0020-7683(03)00282-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035941935
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0045-7825(01)00247-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051765877
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0045-7949(00)00143-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021430437
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0955-5986(01)00015-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052659191
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s1000-9361(08)60017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020782854
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1115/1.3149532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062103573
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1137/1.9780898717716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556580
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2514/1.28307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006364228
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2514/2.1218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024303102
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2514/6.2004-1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010927613
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2514/6.2006-2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021250141
128 rdf:type schema:CreativeWork
129 https://doi.org/10.2514/6.2008-1988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050951700
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2514/6.2011-1402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014523262
132 rdf:type schema:CreativeWork
133 https://doi.org/10.2514/6.2011-1846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051833526
134 rdf:type schema:CreativeWork
135 https://doi.org/10.3901/jme.2005.01.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071548843
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.64939.31 schema:alternateName Beihang University
138 schema:name Institute of Solid Mechanics, Beijing University of Aeronautics and Astronautics, 100191, Beijing, China
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...