The magnetic dipole transitions in the (c) binding system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-11

AUTHORS

HongWei Ke, GuoLi Wang, XueQian Li, ChaoHsi Chang

ABSTRACT

The magnetic dipole transitions between the vector mesons B*c and their relevant pseudoscalar mesons Bc (Bc, B*c, Bc(2S), B*c (2S), Bc(3S), B*c (3S) etc., the binding states of (c) system) of the Bc family are interesting. The ‘hyperfine’ splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (c) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson B*c mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons Bc. Considering the possibility to observe the vector mesons via the transitions at Z0 factory and the potential use of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. a precise calculation of the rates for the transitions such as decays B*c → Bcγ and B*c → Bce+e−, and particularly work in the Bethe-Salpeter framework. As a typical example, we carefully investigate the dependence of the rate Γ(B*c → Bcγ) on the mass difference . More... »

PAGES

2025-2030

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-010-4151-6

DOI

http://dx.doi.org/10.1007/s11433-010-4151-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019187946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Science, Tianjin University, 300072, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ke", 
        "givenName": "HongWei", 
        "id": "sg:person.011507153761.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507153761.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "Department of Physics, Harbin Institute of Technology, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "GuoLi", 
        "id": "sg:person.07770607021.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770607021.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nankai University", 
          "id": "https://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "School of Physics, Nankai University, 300071, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "XueQian", 
        "id": "sg:person.010566167421.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566167421.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.486497.0", 
          "name": [
            "CCAST (World Laboratory), P.O.Box 8730, 100190, Beijing, China", 
            "Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "ChaoHsi", 
        "id": "sg:person.011363550021.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363550021.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11433-010-4156-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002770151", 
          "https://doi.org/10.1007/s11433-010-4156-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-010-4156-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002770151", 
          "https://doi.org/10.1007/s11433-010-4156-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1955.0261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005082637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-010-4145-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006700014", 
          "https://doi.org/10.1007/s11433-010-4145-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-010-4145-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006700014", 
          "https://doi.org/10.1007/s11433-010-4145-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.014003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009169411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.014003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009169411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.054016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013462621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.054016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013462621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.53.4991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014239139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.53.4991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014239139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(99)01402-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017029654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2004.01.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)00254-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020207446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)00461-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021143312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.75.073016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024218671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.75.073016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024218671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysbps.2006.03.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024640222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0954-3899/34/4/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027338910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)01569-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029564237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00386-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033354638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(92)91937-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033611121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(92)91937-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033611121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.76.074035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035754705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.76.074035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035754705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11467-005-0012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043614091", 
          "https://doi.org/10.1007/s11467-005-0012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11467-005-0012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043614091", 
          "https://doi.org/10.1007/s11467-005-0012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(99)00273-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045178576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2008.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045232760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2005.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045518983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0253-6102/35/1/57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059042126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.84.1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.84.1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.87.328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.87.328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.22.1652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060688239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.22.1652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060688239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.24.2874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.24.2874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.42.2300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060698555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.42.2300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060698555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.3845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.3845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.48.4086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060701608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.48.4086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060701608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782744"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11", 
    "datePublishedReg": "2010-11-01", 
    "description": "The magnetic dipole transitions between the vector mesons B*c and their relevant pseudoscalar mesons Bc (Bc, B*c, Bc(2S), B*c (2S), Bc(3S), B*c (3S) etc., the binding states of (c) system) of the Bc family are interesting. The \u2018hyperfine\u2019 splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (c) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson B*c mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons Bc. Considering the possibility to observe the vector mesons via the transitions at Z0 factory and the potential use of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. a precise calculation of the rates for the transitions such as decays B*c \u2192 Bc\u03b3 and B*c \u2192 Bce+e\u2212, and particularly work in the Bethe-Salpeter framework. As a typical example, we carefully investigate the dependence of the rate \u0393(B*c \u2192 Bc\u03b3) on the mass difference .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11433-010-4151-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "The magnetic dipole transitions in the (c) binding system", 
    "pagination": "2025-2030", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b6c7fa124146ae21d4aae0764f0b7a5bd8dfb332e8174b63ea2505df5b80573"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-010-4151-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019187946"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-010-4151-6", 
      "https://app.dimensions.ai/details/publication/pub.1019187946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43238_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11433-010-4151-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-010-4151-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-010-4151-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-010-4151-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-010-4151-6'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-010-4151-6 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N89e3f588d3d446099d853ae606247707
4 schema:citation sg:pub.10.1007/s11433-010-4145-4
5 sg:pub.10.1007/s11433-010-4156-1
6 sg:pub.10.1007/s11467-005-0012-6
7 https://doi.org/10.1016/0370-2693(92)91937-5
8 https://doi.org/10.1016/j.nuclphysbps.2006.03.077
9 https://doi.org/10.1016/j.physletb.2004.01.058
10 https://doi.org/10.1016/j.physletb.2005.12.005
11 https://doi.org/10.1016/j.physletb.2008.07.018
12 https://doi.org/10.1016/s0370-2693(97)00254-2
13 https://doi.org/10.1016/s0370-2693(97)00461-9
14 https://doi.org/10.1016/s0370-2693(97)01569-4
15 https://doi.org/10.1016/s0370-2693(99)00273-7
16 https://doi.org/10.1016/s0370-2693(99)01402-1
17 https://doi.org/10.1016/s0550-3213(00)00386-2
18 https://doi.org/10.1088/0253-6102/35/1/57
19 https://doi.org/10.1088/0954-3899/34/4/008
20 https://doi.org/10.1098/rspa.1955.0261
21 https://doi.org/10.1103/physrev.84.1232
22 https://doi.org/10.1103/physrev.87.328
23 https://doi.org/10.1103/physrevd.22.1652
24 https://doi.org/10.1103/physrevd.24.2874
25 https://doi.org/10.1103/physrevd.42.2300
26 https://doi.org/10.1103/physrevd.46.3845
27 https://doi.org/10.1103/physrevd.48.4086
28 https://doi.org/10.1103/physrevd.53.4991
29 https://doi.org/10.1103/physrevd.64.014003
30 https://doi.org/10.1103/physrevd.75.073016
31 https://doi.org/10.1103/physrevd.76.074035
32 https://doi.org/10.1103/physrevd.80.054016
33 https://doi.org/10.1103/physrevlett.40.598
34 schema:datePublished 2010-11
35 schema:datePublishedReg 2010-11-01
36 schema:description The magnetic dipole transitions between the vector mesons B*c and their relevant pseudoscalar mesons Bc (Bc, B*c, Bc(2S), B*c (2S), Bc(3S), B*c (3S) etc., the binding states of (c) system) of the Bc family are interesting. The ‘hyperfine’ splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (c) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson B*c mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons Bc. Considering the possibility to observe the vector mesons via the transitions at Z0 factory and the potential use of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. a precise calculation of the rates for the transitions such as decays B*c → Bcγ and B*c → Bce+e−, and particularly work in the Bethe-Salpeter framework. As a typical example, we carefully investigate the dependence of the rate Γ(B*c → Bcγ) on the mass difference .
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N2bd75f0099de4ee5a1be8d6b4af5810f
41 N9c12edeb886e41fda084bc24fdefa1a7
42 sg:journal.1282972
43 schema:name The magnetic dipole transitions in the (c) binding system
44 schema:pagination 2025-2030
45 schema:productId N8cfd485ef2a74b1e9b2885eb229c7936
46 Nc34cb41097fe435cac5849873e2508b0
47 Ncccd9163088a4e37a2b2bf58cd6cd736
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019187946
49 https://doi.org/10.1007/s11433-010-4151-6
50 schema:sdDatePublished 2019-04-11T10:53
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N4ae69b79e4e24a45ab1d55cd7ef59fea
53 schema:url http://link.springer.com/10.1007%2Fs11433-010-4151-6
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N2bd75f0099de4ee5a1be8d6b4af5810f schema:volumeNumber 53
58 rdf:type schema:PublicationVolume
59 N42b732a1df7543fba79da7673a83b939 rdf:first sg:person.011363550021.73
60 rdf:rest rdf:nil
61 N44ac247ee85043f69e30ab8242d9ac09 rdf:first sg:person.07770607021.31
62 rdf:rest Nbe925e69950b4f5fbe22bb4e291f3b37
63 N4ae69b79e4e24a45ab1d55cd7ef59fea schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N89e3f588d3d446099d853ae606247707 rdf:first sg:person.011507153761.28
66 rdf:rest N44ac247ee85043f69e30ab8242d9ac09
67 N8cfd485ef2a74b1e9b2885eb229c7936 schema:name readcube_id
68 schema:value 5b6c7fa124146ae21d4aae0764f0b7a5bd8dfb332e8174b63ea2505df5b80573
69 rdf:type schema:PropertyValue
70 N9c12edeb886e41fda084bc24fdefa1a7 schema:issueNumber 11
71 rdf:type schema:PublicationIssue
72 Nbe925e69950b4f5fbe22bb4e291f3b37 rdf:first sg:person.010566167421.98
73 rdf:rest N42b732a1df7543fba79da7673a83b939
74 Nc34cb41097fe435cac5849873e2508b0 schema:name dimensions_id
75 schema:value pub.1019187946
76 rdf:type schema:PropertyValue
77 Ncccd9163088a4e37a2b2bf58cd6cd736 schema:name doi
78 schema:value 10.1007/s11433-010-4151-6
79 rdf:type schema:PropertyValue
80 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
81 schema:name Chemical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
84 schema:name Inorganic Chemistry
85 rdf:type schema:DefinedTerm
86 sg:journal.1282972 schema:issn 1674-7348
87 1869-1927
88 schema:name Science China Physics, Mechanics & Astronomy
89 rdf:type schema:Periodical
90 sg:person.010566167421.98 schema:affiliation https://www.grid.ac/institutes/grid.216938.7
91 schema:familyName Li
92 schema:givenName XueQian
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566167421.98
94 rdf:type schema:Person
95 sg:person.011363550021.73 schema:affiliation https://www.grid.ac/institutes/grid.486497.0
96 schema:familyName Chang
97 schema:givenName ChaoHsi
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363550021.73
99 rdf:type schema:Person
100 sg:person.011507153761.28 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
101 schema:familyName Ke
102 schema:givenName HongWei
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507153761.28
104 rdf:type schema:Person
105 sg:person.07770607021.31 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
106 schema:familyName Wang
107 schema:givenName GuoLi
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770607021.31
109 rdf:type schema:Person
110 sg:pub.10.1007/s11433-010-4145-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006700014
111 https://doi.org/10.1007/s11433-010-4145-4
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11433-010-4156-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002770151
114 https://doi.org/10.1007/s11433-010-4156-1
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11467-005-0012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043614091
117 https://doi.org/10.1007/s11467-005-0012-6
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0370-2693(92)91937-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033611121
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.nuclphysbps.2006.03.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024640222
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.physletb.2004.01.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059005
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.physletb.2005.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045518983
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.physletb.2008.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045232760
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0370-2693(97)00254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020207446
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0370-2693(97)00461-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021143312
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0370-2693(97)01569-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029564237
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0370-2693(99)00273-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045178576
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0370-2693(99)01402-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017029654
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0550-3213(00)00386-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033354638
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0253-6102/35/1/57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059042126
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0954-3899/34/4/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027338910
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1098/rspa.1955.0261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005082637
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrev.84.1232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458396
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrev.87.328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459488
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevd.22.1652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688239
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevd.24.2874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689188
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevd.42.2300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060698555
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevd.46.3845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060700712
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevd.48.4086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060701608
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevd.53.4991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014239139
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevd.64.014003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009169411
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevd.75.073016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024218671
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevd.76.074035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035754705
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevd.80.054016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013462621
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.40.598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782744
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
174 schema:name Department of Physics, Harbin Institute of Technology, 150001, Harbin, China
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.216938.7 schema:alternateName Nankai University
177 schema:name School of Physics, Nankai University, 300071, Tianjin, China
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
180 schema:name School of Science, Tianjin University, 300072, Tianjin, China
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.486497.0 schema:alternateName Institute of Theoretical Physics
183 schema:name CCAST (World Laboratory), P.O.Box 8730, 100190, Beijing, China
184 Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...