Giant enhancement of magnetocaloric effect in metallic glass matrix composite View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-03-27

AUTHORS

YongTian Wang, HaiYang Bai, MingXiang Pan, DeQian Zhao, WeiHua Wang

ABSTRACT

sThe magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher temperature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J·kg−1 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J·kg−1) and MnFeP0.45As0.55 (390 J·kg−1)(containing either exorbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (ΔSm) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum ΔSm approaches a nearly constant value in a wide temperature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature. More... »

PAGES

337-348

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11433-008-0053-2

DOI

http://dx.doi.org/10.1007/s11433-008-0053-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021012084


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "YongTian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "HaiYang", 
        "id": "sg:person.0640310271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "MingXiang", 
        "id": "sg:person.014715106052.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715106052.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "DeQian", 
        "id": "sg:person.010367253007.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367253007.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "WeiHua", 
        "id": "sg:person.011433524521.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433524521.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044559490", 
          "https://doi.org/10.1038/nature02657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050835536", 
          "https://doi.org/10.1038/nmat1853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015839163", 
          "https://doi.org/10.1038/nmat1395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415150a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022524944", 
          "https://doi.org/10.1038/415150a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03-27", 
    "datePublishedReg": "2008-03-27", 
    "description": "AbstractsThe magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher temperature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J\u00b7kg\u22121 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J\u00b7kg\u22121) and MnFeP0.45As0.55 (390 J\u00b7kg\u22121)(containing either exorbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (\u0394Sm) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum \u0394Sm approaches a nearly constant value in a wide temperature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11433-008-0053-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1282972", 
        "issn": [
          "1674-7348", 
          "1869-1927"
        ], 
        "name": "Science China Physics, Mechanics & Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "metallic glass composites", 
      "magnetocaloric effect", 
      "refrigerant capacity", 
      "glass composites", 
      "extended high-temperature range", 
      "magnetic entropy change peak", 
      "ideal Ericsson-cycle magnetic refrigeration", 
      "Ericsson-cycle magnetic refrigeration", 
      "whole low-temperature range", 
      "metallic glass matrix composites", 
      "magnetic refrigerant capacity", 
      "entropy change peak", 
      "glass matrix composites", 
      "low-temperature refrigeration", 
      "temperature range", 
      "room temperature", 
      "maximum \u0394SM", 
      "matrix composites", 
      "magnetic refrigeration", 
      "high temperature range", 
      "wide temperature span", 
      "pure Gd", 
      "giant enhancement", 
      "low temperature range", 
      "temperature span", 
      "composites", 
      "broad temperature range", 
      "amorphous nature", 
      "half maximum", 
      "full width", 
      "refrigeration", 
      "constant value", 
      "\u0394SM", 
      "temperature", 
      "alloy", 
      "range", 
      "enhancement", 
      "great success", 
      "width", 
      "applications", 
      "effect", 
      "capacity", 
      "peak", 
      "Gd", 
      "maximum", 
      "span", 
      "values", 
      "combination", 
      "time", 
      "nature", 
      "region", 
      "compounds", 
      "success"
    ], 
    "name": "Giant enhancement of magnetocaloric effect in metallic glass matrix composite", 
    "pagination": "337-348", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021012084"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11433-008-0053-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11433-008-0053-2", 
      "https://app.dimensions.ai/details/publication/pub.1021012084"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_474.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11433-008-0053-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11433-008-0053-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11433-008-0053-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11433-008-0053-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11433-008-0053-2'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      81 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11433-008-0053-2 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Ne178720feda0457f8c62f5ae42704054
4 schema:citation sg:pub.10.1038/415150a
5 sg:pub.10.1038/nature02657
6 sg:pub.10.1038/nmat1395
7 sg:pub.10.1038/nmat1853
8 schema:datePublished 2008-03-27
9 schema:datePublishedReg 2008-03-27
10 schema:description AbstractsThe magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher temperature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J·kg−1 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J·kg−1) and MnFeP0.45As0.55 (390 J·kg−1)(containing either exorbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (ΔSm) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum ΔSm approaches a nearly constant value in a wide temperature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N351c8caa3d6b4163be9d5dfe92161285
14 Ncf2f7a915b3e411896c84ba53f1679e2
15 sg:journal.1282972
16 schema:keywords Ericsson-cycle magnetic refrigeration
17 Gd
18 alloy
19 amorphous nature
20 applications
21 broad temperature range
22 capacity
23 combination
24 composites
25 compounds
26 constant value
27 effect
28 enhancement
29 entropy change peak
30 extended high-temperature range
31 full width
32 giant enhancement
33 glass composites
34 glass matrix composites
35 great success
36 half maximum
37 high temperature range
38 ideal Ericsson-cycle magnetic refrigeration
39 low temperature range
40 low-temperature refrigeration
41 magnetic entropy change peak
42 magnetic refrigerant capacity
43 magnetic refrigeration
44 magnetocaloric effect
45 matrix composites
46 maximum
47 maximum ΔSM
48 metallic glass composites
49 metallic glass matrix composites
50 nature
51 peak
52 pure Gd
53 range
54 refrigerant capacity
55 refrigeration
56 region
57 room temperature
58 span
59 success
60 temperature
61 temperature range
62 temperature span
63 time
64 values
65 whole low-temperature range
66 wide temperature span
67 width
68 ΔSM
69 schema:name Giant enhancement of magnetocaloric effect in metallic glass matrix composite
70 schema:pagination 337-348
71 schema:productId N495fb6d273154c2eb19d7bc9e2d5b871
72 Ndbeab9c0d097472a8d792c54c8866951
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021012084
74 https://doi.org/10.1007/s11433-008-0053-2
75 schema:sdDatePublished 2022-09-02T15:53
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Ne8bd969cb2de45cab5bcfaf65fc5757e
78 schema:url https://doi.org/10.1007/s11433-008-0053-2
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N351c8caa3d6b4163be9d5dfe92161285 schema:volumeNumber 51
83 rdf:type schema:PublicationVolume
84 N495fb6d273154c2eb19d7bc9e2d5b871 schema:name dimensions_id
85 schema:value pub.1021012084
86 rdf:type schema:PropertyValue
87 N5f1c642e79bf478b9c4f727ae88bcf20 rdf:first sg:person.011433524521.36
88 rdf:rest rdf:nil
89 N6a1924731b31402dac52eeca5390adb8 rdf:first sg:person.010367253007.74
90 rdf:rest N5f1c642e79bf478b9c4f727ae88bcf20
91 Nc936ad649d9d496aa13f581f16e425ef schema:affiliation grid-institutes:grid.458438.6
92 schema:familyName Wang
93 schema:givenName YongTian
94 rdf:type schema:Person
95 Nca2f840af3df4dfeaf1bbedf303523f6 rdf:first sg:person.0640310271.16
96 rdf:rest Nef5f3256e3f34c628981763262887e0f
97 Ncf2f7a915b3e411896c84ba53f1679e2 schema:issueNumber 4
98 rdf:type schema:PublicationIssue
99 Ndbeab9c0d097472a8d792c54c8866951 schema:name doi
100 schema:value 10.1007/s11433-008-0053-2
101 rdf:type schema:PropertyValue
102 Ne178720feda0457f8c62f5ae42704054 rdf:first Nc936ad649d9d496aa13f581f16e425ef
103 rdf:rest Nca2f840af3df4dfeaf1bbedf303523f6
104 Ne8bd969cb2de45cab5bcfaf65fc5757e schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nef5f3256e3f34c628981763262887e0f rdf:first sg:person.014715106052.19
107 rdf:rest N6a1924731b31402dac52eeca5390adb8
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
112 schema:name Astronomical and Space Sciences
113 rdf:type schema:DefinedTerm
114 sg:journal.1282972 schema:issn 1674-7348
115 1869-1927
116 schema:name Science China Physics, Mechanics & Astronomy
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.010367253007.74 schema:affiliation grid-institutes:grid.458438.6
120 schema:familyName Zhao
121 schema:givenName DeQian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367253007.74
123 rdf:type schema:Person
124 sg:person.011433524521.36 schema:affiliation grid-institutes:grid.458438.6
125 schema:familyName Wang
126 schema:givenName WeiHua
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011433524521.36
128 rdf:type schema:Person
129 sg:person.014715106052.19 schema:affiliation grid-institutes:grid.458438.6
130 schema:familyName Pan
131 schema:givenName MingXiang
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715106052.19
133 rdf:type schema:Person
134 sg:person.0640310271.16 schema:affiliation grid-institutes:grid.458438.6
135 schema:familyName Bai
136 schema:givenName HaiYang
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16
138 rdf:type schema:Person
139 sg:pub.10.1038/415150a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022524944
140 https://doi.org/10.1038/415150a
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature02657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559490
143 https://doi.org/10.1038/nature02657
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nmat1395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015839163
146 https://doi.org/10.1038/nmat1395
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmat1853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050835536
149 https://doi.org/10.1038/nmat1853
150 rdf:type schema:CreativeWork
151 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China
152 schema:name Institute of Physics, Chinese Academy of Sciences, 100080, Beijing, China
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...