A new discrete Fourier transform randomness test View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Meihui Chen, Hua Chen, Limin Fan, Shaofeng Zhu, Wei Xi, Dengguo Feng

ABSTRACT

The randomness of random number generators (RNGs) is important for the reliability of cryptographic systems since the outputs of RNGs are usually utilized to construct cryptographic parameters. Statistical tests are employed to evaluate the randomness of the RNG outputs. The discrete Fourier transform (DFT) test is an important test item of the most popular statistical test suite NIST SP800-22. In the standard NIST DFT test and related improved studies, there exist accuracy and efficiency issues. First, the bit sequences generated by known good RNGs have a high probability to be rejected when the sequences are long or the sequence number is large, due to the deviation between the actual distribution of the test statistic values and the assumed normal distribution. Second, the long test time and high memory consumptions of the complex DFT test algorithm also affect its practicability. To solve these problems, we propose a new DFT test method for long sequences (106 or more bits). Different from the previous DFT test methods focusing on making the distribution of the test statistic values closer to the normal distribution, we reconstruct the statistic to follow the chi-square distribution. Our experiment result shows that our method has higher reliability in the two-level test, and could effectively reduce the test time and the memory consumptions. When applying our method on randomness test, the test efficiency has been increased to about 4 times for 106-bit sequences and 7 times for 107-bit sequences. In conclusion, our method has lower probability of making errors, and is more suitable for practical application scenarios. More... »

PAGES

32107

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11432-018-9489-x

DOI

http://dx.doi.org/10.1007/s11432-018-9489-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112989724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Software", 
          "id": "https://www.grid.ac/institutes/grid.458446.f", 
          "name": [
            "Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Meihui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Software", 
          "id": "https://www.grid.ac/institutes/grid.458446.f", 
          "name": [
            "Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Limin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Shaofeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Southern Power Grid Science Research Institute, 510080, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xi", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Software", 
          "id": "https://www.grid.ac/institutes/grid.458446.f", 
          "name": [
            "Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Dengguo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-05149-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005627147", 
          "https://doi.org/10.1007/978-3-319-05149-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2988228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013498949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/945511.945515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016139325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15874-2_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026193650", 
          "https://doi.org/10.1007/978-3-642-15874-2_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15874-2_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026193650", 
          "https://doi.org/10.1007/978-3-642-15874-2_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-011-4401-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044271186", 
          "https://doi.org/10.1007/s11432-011-4401-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1052093804", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04722-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052093804", 
          "https://doi.org/10.1007/978-3-662-04722-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04722-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052093804", 
          "https://doi.org/10.1007/978-3-662-04722-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-25283-9_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053526729", 
          "https://doi.org/10.1007/978-3-642-25283-9_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2015.3097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056757037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2016.0260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056757470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietfec/e88-a.1.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059669433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietfec/e90-a.9.1788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059670772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2012.2185227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-53887-6_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084909689", 
          "https://doi.org/10.1007/978-3-662-53887-6_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3906/elk-1605-212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092232069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ic3i.2014.7019665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094118733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ecctd.2007.4529674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095247632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2007.378572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095705088"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The randomness of random number generators (RNGs) is important for the reliability of cryptographic systems since the outputs of RNGs are usually utilized to construct cryptographic parameters. Statistical tests are employed to evaluate the randomness of the RNG outputs. The discrete Fourier transform (DFT) test is an important test item of the most popular statistical test suite NIST SP800-22. In the standard NIST DFT test and related improved studies, there exist accuracy and efficiency issues. First, the bit sequences generated by known good RNGs have a high probability to be rejected when the sequences are long or the sequence number is large, due to the deviation between the actual distribution of the test statistic values and the assumed normal distribution. Second, the long test time and high memory consumptions of the complex DFT test algorithm also affect its practicability. To solve these problems, we propose a new DFT test method for long sequences (106 or more bits). Different from the previous DFT test methods focusing on making the distribution of the test statistic values closer to the normal distribution, we reconstruct the statistic to follow the chi-square distribution. Our experiment result shows that our method has higher reliability in the two-level test, and could effectively reduce the test time and the memory consumptions. When applying our method on randomness test, the test efficiency has been increased to about 4 times for 106-bit sequences and 7 times for 107-bit sequences. In conclusion, our method has lower probability of making errors, and is more suitable for practical application scenarios.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11432-018-9489-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135989", 
        "issn": [
          "1009-2757", 
          "1674-733X"
        ], 
        "name": "Science China Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "A new discrete Fourier transform randomness test", 
    "pagination": "32107", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3c3618fc13250941b4a1bbd0e82418c5f60a1b3d47a321ed08c8c45e0c596f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11432-018-9489-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112989724"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11432-018-9489-x", 
      "https://app.dimensions.ai/details/publication/pub.1112989724"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112072_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11432-018-9489-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11432-018-9489-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11432-018-9489-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11432-018-9489-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11432-018-9489-x'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11432-018-9489-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N662097543f6f48d68588feda94dcc14b
4 schema:citation sg:pub.10.1007/978-3-319-05149-9_4
5 sg:pub.10.1007/978-3-642-15874-2_27
6 sg:pub.10.1007/978-3-642-25283-9_10
7 sg:pub.10.1007/978-3-662-04722-4
8 sg:pub.10.1007/978-3-662-53887-6_11
9 sg:pub.10.1007/s11432-011-4401-x
10 https://app.dimensions.ai/details/publication/pub.1052093804
11 https://doi.org/10.1049/el.2015.3097
12 https://doi.org/10.1049/el.2016.0260
13 https://doi.org/10.1093/ietfec/e88-a.1.67
14 https://doi.org/10.1093/ietfec/e90-a.9.1788
15 https://doi.org/10.1109/ecctd.2007.4529674
16 https://doi.org/10.1109/ic3i.2014.7019665
17 https://doi.org/10.1109/iscas.2007.378572
18 https://doi.org/10.1109/tifs.2012.2185227
19 https://doi.org/10.1145/2988228
20 https://doi.org/10.1145/945511.945515
21 https://doi.org/10.3906/elk-1605-212
22 schema:datePublished 2019-03
23 schema:datePublishedReg 2019-03-01
24 schema:description The randomness of random number generators (RNGs) is important for the reliability of cryptographic systems since the outputs of RNGs are usually utilized to construct cryptographic parameters. Statistical tests are employed to evaluate the randomness of the RNG outputs. The discrete Fourier transform (DFT) test is an important test item of the most popular statistical test suite NIST SP800-22. In the standard NIST DFT test and related improved studies, there exist accuracy and efficiency issues. First, the bit sequences generated by known good RNGs have a high probability to be rejected when the sequences are long or the sequence number is large, due to the deviation between the actual distribution of the test statistic values and the assumed normal distribution. Second, the long test time and high memory consumptions of the complex DFT test algorithm also affect its practicability. To solve these problems, we propose a new DFT test method for long sequences (106 or more bits). Different from the previous DFT test methods focusing on making the distribution of the test statistic values closer to the normal distribution, we reconstruct the statistic to follow the chi-square distribution. Our experiment result shows that our method has higher reliability in the two-level test, and could effectively reduce the test time and the memory consumptions. When applying our method on randomness test, the test efficiency has been increased to about 4 times for 106-bit sequences and 7 times for 107-bit sequences. In conclusion, our method has lower probability of making errors, and is more suitable for practical application scenarios.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N027aa6fc513741a2ade922bd7f7a2f77
29 Nf7a6fc363ddc499cbd871f8fef1357de
30 sg:journal.1135989
31 schema:name A new discrete Fourier transform randomness test
32 schema:pagination 32107
33 schema:productId N0619868a7450401996b956e74caf41d4
34 N40f628ec185a4a589a5dc9d4895a6ffb
35 N5f9fc231966a4d9c89bc7515be686d08
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112989724
37 https://doi.org/10.1007/s11432-018-9489-x
38 schema:sdDatePublished 2019-04-11T13:05
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nc564a0ac87ef4ff0a709eaf38961bcae
41 schema:url https://link.springer.com/10.1007%2Fs11432-018-9489-x
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N027aa6fc513741a2ade922bd7f7a2f77 schema:issueNumber 3
46 rdf:type schema:PublicationIssue
47 N0619868a7450401996b956e74caf41d4 schema:name dimensions_id
48 schema:value pub.1112989724
49 rdf:type schema:PropertyValue
50 N0b83e751cd334d768f5b31f3a1ae7e56 rdf:first Ncf8d0f89ed974b968facf6f54a14f2fb
51 rdf:rest N4f1d7a7e41d94da88039a1a0da7d2d68
52 N40f628ec185a4a589a5dc9d4895a6ffb schema:name doi
53 schema:value 10.1007/s11432-018-9489-x
54 rdf:type schema:PropertyValue
55 N4f1d7a7e41d94da88039a1a0da7d2d68 rdf:first Na8afb44409754bcfb2b2e869411d610e
56 rdf:rest Ndaf398efd1d94fd78d81655a0481eefa
57 N51e1ecd153ad4961a54004f25338ea2e schema:affiliation https://www.grid.ac/institutes/grid.458446.f
58 schema:familyName Fan
59 schema:givenName Limin
60 rdf:type schema:Person
61 N5f9fc231966a4d9c89bc7515be686d08 schema:name readcube_id
62 schema:value c3c3618fc13250941b4a1bbd0e82418c5f60a1b3d47a321ed08c8c45e0c596f2
63 rdf:type schema:PropertyValue
64 N662097543f6f48d68588feda94dcc14b rdf:first Nb7b7bf0442b848c2924c7841e8b114a2
65 rdf:rest Nbcf07c6454c341aebaa855a5b330cd52
66 N68b8a78ace994133bc09d22ea31a1c2e schema:name Southern Power Grid Science Research Institute, 510080, Guangzhou, China
67 rdf:type schema:Organization
68 N8ef49af4d2114972914166cd72a5448c rdf:first N51e1ecd153ad4961a54004f25338ea2e
69 rdf:rest N0b83e751cd334d768f5b31f3a1ae7e56
70 Na8afb44409754bcfb2b2e869411d610e schema:affiliation N68b8a78ace994133bc09d22ea31a1c2e
71 schema:familyName Xi
72 schema:givenName Wei
73 rdf:type schema:Person
74 Nb7b7bf0442b848c2924c7841e8b114a2 schema:affiliation https://www.grid.ac/institutes/grid.458446.f
75 schema:familyName Chen
76 schema:givenName Meihui
77 rdf:type schema:Person
78 Nbc81a9d5085a4eb09e2748a4950a2376 schema:affiliation https://www.grid.ac/institutes/grid.458446.f
79 schema:familyName Feng
80 schema:givenName Dengguo
81 rdf:type schema:Person
82 Nbcf07c6454c341aebaa855a5b330cd52 rdf:first Nbfd46c2ab92944bd9bbe05b7def1ec96
83 rdf:rest N8ef49af4d2114972914166cd72a5448c
84 Nbfd46c2ab92944bd9bbe05b7def1ec96 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
85 schema:familyName Chen
86 schema:givenName Hua
87 rdf:type schema:Person
88 Nc564a0ac87ef4ff0a709eaf38961bcae schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Ncf8d0f89ed974b968facf6f54a14f2fb schema:affiliation https://www.grid.ac/institutes/grid.410726.6
91 schema:familyName Zhu
92 schema:givenName Shaofeng
93 rdf:type schema:Person
94 Ndaf398efd1d94fd78d81655a0481eefa rdf:first Nbc81a9d5085a4eb09e2748a4950a2376
95 rdf:rest rdf:nil
96 Nf7a6fc363ddc499cbd871f8fef1357de schema:volumeNumber 62
97 rdf:type schema:PublicationVolume
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
102 schema:name Statistics
103 rdf:type schema:DefinedTerm
104 sg:journal.1135989 schema:issn 1009-2757
105 1674-733X
106 schema:name Science China Information Sciences
107 rdf:type schema:Periodical
108 sg:pub.10.1007/978-3-319-05149-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005627147
109 https://doi.org/10.1007/978-3-319-05149-9_4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-642-15874-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026193650
112 https://doi.org/10.1007/978-3-642-15874-2_27
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-642-25283-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053526729
115 https://doi.org/10.1007/978-3-642-25283-9_10
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-662-04722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052093804
118 https://doi.org/10.1007/978-3-662-04722-4
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-662-53887-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084909689
121 https://doi.org/10.1007/978-3-662-53887-6_11
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11432-011-4401-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044271186
124 https://doi.org/10.1007/s11432-011-4401-x
125 rdf:type schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1052093804 schema:CreativeWork
127 https://doi.org/10.1049/el.2015.3097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056757037
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1049/el.2016.0260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056757470
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/ietfec/e88-a.1.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059669433
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/ietfec/e90-a.9.1788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059670772
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/ecctd.2007.4529674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095247632
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/ic3i.2014.7019665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094118733
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/iscas.2007.378572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095705088
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tifs.2012.2185227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629969
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/2988228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013498949
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/945511.945515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016139325
146 rdf:type schema:CreativeWork
147 https://doi.org/10.3906/elk-1605-212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092232069
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
150 schema:name Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, 100190, Beijing, China
151 University of Chinese Academy of Sciences, 100049, Beijing, China
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.458446.f schema:alternateName Institute of Software
154 schema:name Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, 100190, Beijing, China
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...