Efficient zonal diagnosis with maximum satisfiability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Meng Liu, Dantong Ouyang, Shaowei Cai, Liming Zhang

ABSTRACT

Model-based diagnosis (MBD) has been widely acknowledged as an effective diagnosis paradigm. However, for large scale circuits, it is difficult to find all cardinality-minimal diagnoses within a reasonable time. This paper proposes a novel method that takes a significant step in this direction. The idea is to divide a circuit into zones and compute the cardinality-minimal diagnoses by finding subset-minimal diagnoses with cardinality-minimal via a maximum satisfiability (MaxSAT) solver on an abstracted circuit that is composed of these zones instead of all components. We also propose a new propagate-extend method for extending the seed-TLDs to obtain all cardinality-minimal diagnoses efficiently. We implement our method with a state-of-the-art core-guided MaxSAT solver, and present evidence that it significantly improves the diagnosis efficiency on ISCAS-85 circuits. Our method outperforms SATbD, which was recently shown to outperform most complete MBD approaches using satisfiability (SAT). More... »

PAGES

112101

References to SciGraph publications

  • 2014. Incremental Cardinality Constraints for MaxSAT in PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING
  • 2015-03. Experimental analyses on phase transitions in compiling satisfiability problems in SCIENCE CHINA INFORMATION SCIENCES
  • 2012. Faulty Interaction Identification via Constraint Solving and Optimization in THEORY AND APPLICATIONS OF SATISFIABILITY TESTING – SAT 2012
  • 2017-01. Model-based diagnosis of incomplete discrete-event system with rough set theory in SCIENCE CHINA INFORMATION SCIENCES
  • 2017-09. Cost-effective testing based fault localization with distance based test-suite reduction in SCIENCE CHINA INFORMATION SCIENCES
  • 2017-06. A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity in SCIENCE CHINA INFORMATION SCIENCES
  • 2017-09. A randomized diversification strategy for solving satisfiability problem with long clauses in SCIENCE CHINA INFORMATION SCIENCES
  • 2016-09. A novel weighting scheme for random k-SAT in SCIENCE CHINA INFORMATION SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11432-017-9273-5

    DOI

    http://dx.doi.org/10.1007/s11432-017-9273-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104262181


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jilin University", 
              "id": "https://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "College of Computer Science and Technology, Jilin University, 130012, Changchun, China", 
                "Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, 130012, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Meng", 
            "id": "sg:person.015154046632.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015154046632.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jilin University", 
              "id": "https://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "College of Computer Science and Technology, Jilin University, 130012, Changchun, China", 
                "Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, 130012, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ouyang", 
            "givenName": "Dantong", 
            "id": "sg:person.012037630324.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012037630324.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Software", 
              "id": "https://www.grid.ac/institutes/grid.458446.f", 
              "name": [
                "State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Shaowei", 
            "id": "sg:person.011507045261.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507045261.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jilin University", 
              "id": "https://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "College of Computer Science and Technology, Jilin University, 130012, Changchun, China", 
                "Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, 130012, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Liming", 
            "id": "sg:person.016106210356.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106210356.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11432-014-5154-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002665152", 
              "https://doi.org/10.1007/s11432-014-5154-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1531542.1531621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006454030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31612-8_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008276505", 
              "https://doi.org/10.1007/978-3-642-31612-8_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90062-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015189740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90062-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015189740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-016-5526-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023384864", 
              "https://doi.org/10.1007/s11432-016-5526-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-016-5526-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023384864", 
              "https://doi.org/10.1007/s11432-016-5526-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90063-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024335472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(87)90063-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024335472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/37888.37963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025005100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2006.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031254386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dam.2005.10.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032207851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10428-7_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035386708", 
              "https://doi.org/10.1007/978-3-319-10428-7_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-015-0897-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042156260", 
              "https://doi.org/10.1007/s11432-015-0897-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-015-0897-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042156260", 
              "https://doi.org/10.1007/s11432-015-0897-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1366110.1366131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042918270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(92)90027-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045870107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(92)90027-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045870107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/502090.502091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047035987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcad.2005.852031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061537230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129054112500025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062897278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-015-5377-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083802060", 
              "https://doi.org/10.1007/s11432-015-5377-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-015-5377-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083802060", 
              "https://doi.org/10.1007/s11432-015-5377-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-016-0258-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085409685", 
              "https://doi.org/10.1007/s11432-016-0258-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-016-0258-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085409685", 
              "https://doi.org/10.1007/s11432-016-0258-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-016-9057-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090951414", 
              "https://doi.org/10.1007/s11432-016-9057-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-016-9057-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090951414", 
              "https://doi.org/10.1007/s11432-016-9057-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/famcad.2007.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094033812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/date.2007.364455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094448044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccad.2007.4397272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094933673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.4503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105689976"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "Model-based diagnosis (MBD) has been widely acknowledged as an effective diagnosis paradigm. However, for large scale circuits, it is difficult to find all cardinality-minimal diagnoses within a reasonable time. This paper proposes a novel method that takes a significant step in this direction. The idea is to divide a circuit into zones and compute the cardinality-minimal diagnoses by finding subset-minimal diagnoses with cardinality-minimal via a maximum satisfiability (MaxSAT) solver on an abstracted circuit that is composed of these zones instead of all components. We also propose a new propagate-extend method for extending the seed-TLDs to obtain all cardinality-minimal diagnoses efficiently. We implement our method with a state-of-the-art core-guided MaxSAT solver, and present evidence that it significantly improves the diagnosis efficiency on ISCAS-85 circuits. Our method outperforms SATbD, which was recently shown to outperform most complete MBD approaches using satisfiability (SAT).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11432-017-9273-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7198441", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135989", 
            "issn": [
              "1009-2757", 
              "1674-733X"
            ], 
            "name": "Science China Information Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "61"
          }
        ], 
        "name": "Efficient zonal diagnosis with maximum satisfiability", 
        "pagination": "112101", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1efc14307372dfd0c51c3bb4853c9eca8e12bea91e7bdc2691a4a35a41e29579"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11432-017-9273-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104262181"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11432-017-9273-5", 
          "https://app.dimensions.ai/details/publication/pub.1104262181"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89798_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11432-017-9273-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11432-017-9273-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11432-017-9273-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11432-017-9273-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11432-017-9273-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11432-017-9273-5 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author Nadb45285b3c541b1a226719318c34051
    4 schema:citation sg:pub.10.1007/978-3-319-10428-7_39
    5 sg:pub.10.1007/978-3-642-31612-8_15
    6 sg:pub.10.1007/s11432-014-5154-0
    7 sg:pub.10.1007/s11432-015-0897-0
    8 sg:pub.10.1007/s11432-015-5377-8
    9 sg:pub.10.1007/s11432-016-0258-4
    10 sg:pub.10.1007/s11432-016-5526-8
    11 sg:pub.10.1007/s11432-016-9057-8
    12 https://doi.org/10.1016/0004-3702(87)90062-2
    13 https://doi.org/10.1016/0004-3702(87)90063-4
    14 https://doi.org/10.1016/0004-3702(92)90027-u
    15 https://doi.org/10.1016/j.dam.2005.10.022
    16 https://doi.org/10.1016/j.tcs.2006.01.001
    17 https://doi.org/10.1109/date.2007.364455
    18 https://doi.org/10.1109/famcad.2007.26
    19 https://doi.org/10.1109/iccad.2007.4397272
    20 https://doi.org/10.1109/tcad.2005.852031
    21 https://doi.org/10.1142/s0129054112500025
    22 https://doi.org/10.1145/1366110.1366131
    23 https://doi.org/10.1145/1531542.1531621
    24 https://doi.org/10.1145/37888.37963
    25 https://doi.org/10.1145/502090.502091
    26 https://doi.org/10.1613/jair.4503
    27 schema:datePublished 2018-11
    28 schema:datePublishedReg 2018-11-01
    29 schema:description Model-based diagnosis (MBD) has been widely acknowledged as an effective diagnosis paradigm. However, for large scale circuits, it is difficult to find all cardinality-minimal diagnoses within a reasonable time. This paper proposes a novel method that takes a significant step in this direction. The idea is to divide a circuit into zones and compute the cardinality-minimal diagnoses by finding subset-minimal diagnoses with cardinality-minimal via a maximum satisfiability (MaxSAT) solver on an abstracted circuit that is composed of these zones instead of all components. We also propose a new propagate-extend method for extending the seed-TLDs to obtain all cardinality-minimal diagnoses efficiently. We implement our method with a state-of-the-art core-guided MaxSAT solver, and present evidence that it significantly improves the diagnosis efficiency on ISCAS-85 circuits. Our method outperforms SATbD, which was recently shown to outperform most complete MBD approaches using satisfiability (SAT).
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N096ad90eb0e44f58841706f5e1ba686d
    34 N67fb13049e1a403098b0881b1b851fd2
    35 sg:journal.1135989
    36 schema:name Efficient zonal diagnosis with maximum satisfiability
    37 schema:pagination 112101
    38 schema:productId N53e02ac74d574aad8a5aa327bbedce47
    39 Nac9677b51fdc459188d2f2819e9b1b62
    40 Nd00d593cd3ff45778c34bda85c9defa0
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104262181
    42 https://doi.org/10.1007/s11432-017-9273-5
    43 schema:sdDatePublished 2019-04-11T09:54
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N8ec51cfa3fca4e4a891fd5d143767ba2
    46 schema:url https://link.springer.com/10.1007%2Fs11432-017-9273-5
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N096ad90eb0e44f58841706f5e1ba686d schema:volumeNumber 61
    51 rdf:type schema:PublicationVolume
    52 N53e02ac74d574aad8a5aa327bbedce47 schema:name doi
    53 schema:value 10.1007/s11432-017-9273-5
    54 rdf:type schema:PropertyValue
    55 N67fb13049e1a403098b0881b1b851fd2 schema:issueNumber 11
    56 rdf:type schema:PublicationIssue
    57 N7043081a4c274aeeb0eeed8b72f4b7c9 rdf:first sg:person.011507045261.87
    58 rdf:rest N8fe58d750dd8493c8517fb3b334542fd
    59 N8ec51cfa3fca4e4a891fd5d143767ba2 schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N8fe58d750dd8493c8517fb3b334542fd rdf:first sg:person.016106210356.61
    62 rdf:rest rdf:nil
    63 Nac9677b51fdc459188d2f2819e9b1b62 schema:name dimensions_id
    64 schema:value pub.1104262181
    65 rdf:type schema:PropertyValue
    66 Nadb45285b3c541b1a226719318c34051 rdf:first sg:person.015154046632.93
    67 rdf:rest Nf378ab510da64d7082f7a9cfdfd27877
    68 Nd00d593cd3ff45778c34bda85c9defa0 schema:name readcube_id
    69 schema:value 1efc14307372dfd0c51c3bb4853c9eca8e12bea91e7bdc2691a4a35a41e29579
    70 rdf:type schema:PropertyValue
    71 Nf378ab510da64d7082f7a9cfdfd27877 rdf:first sg:person.012037630324.01
    72 rdf:rest N7043081a4c274aeeb0eeed8b72f4b7c9
    73 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Medical and Health Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Clinical Sciences
    78 rdf:type schema:DefinedTerm
    79 sg:grant.7198441 http://pending.schema.org/fundedItem sg:pub.10.1007/s11432-017-9273-5
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1135989 schema:issn 1009-2757
    82 1674-733X
    83 schema:name Science China Information Sciences
    84 rdf:type schema:Periodical
    85 sg:person.011507045261.87 schema:affiliation https://www.grid.ac/institutes/grid.458446.f
    86 schema:familyName Cai
    87 schema:givenName Shaowei
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507045261.87
    89 rdf:type schema:Person
    90 sg:person.012037630324.01 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
    91 schema:familyName Ouyang
    92 schema:givenName Dantong
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012037630324.01
    94 rdf:type schema:Person
    95 sg:person.015154046632.93 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
    96 schema:familyName Liu
    97 schema:givenName Meng
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015154046632.93
    99 rdf:type schema:Person
    100 sg:person.016106210356.61 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
    101 schema:familyName Zhang
    102 schema:givenName Liming
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106210356.61
    104 rdf:type schema:Person
    105 sg:pub.10.1007/978-3-319-10428-7_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035386708
    106 https://doi.org/10.1007/978-3-319-10428-7_39
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-642-31612-8_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008276505
    109 https://doi.org/10.1007/978-3-642-31612-8_15
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s11432-014-5154-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002665152
    112 https://doi.org/10.1007/s11432-014-5154-0
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s11432-015-0897-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042156260
    115 https://doi.org/10.1007/s11432-015-0897-0
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s11432-015-5377-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083802060
    118 https://doi.org/10.1007/s11432-015-5377-8
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s11432-016-0258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085409685
    121 https://doi.org/10.1007/s11432-016-0258-4
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s11432-016-5526-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023384864
    124 https://doi.org/10.1007/s11432-016-5526-8
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s11432-016-9057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090951414
    127 https://doi.org/10.1007/s11432-016-9057-8
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0004-3702(87)90062-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015189740
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0004-3702(87)90063-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024335472
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0004-3702(92)90027-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1045870107
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.dam.2005.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032207851
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.tcs.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031254386
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/date.2007.364455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094448044
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/famcad.2007.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094033812
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/iccad.2007.4397272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094933673
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tcad.2005.852031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061537230
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1142/s0129054112500025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062897278
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1145/1366110.1366131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042918270
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1145/1531542.1531621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006454030
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1145/37888.37963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025005100
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1145/502090.502091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047035987
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1613/jair.4503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105689976
    158 rdf:type schema:CreativeWork
    159 https://www.grid.ac/institutes/grid.458446.f schema:alternateName Institute of Software
    160 schema:name State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, 100049, Beijing, China
    161 rdf:type schema:Organization
    162 https://www.grid.ac/institutes/grid.64924.3d schema:alternateName Jilin University
    163 schema:name College of Computer Science and Technology, Jilin University, 130012, Changchun, China
    164 Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, 130012, Changchun, China
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...