Pinning controllability of autonomous Boolean control networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07

AUTHORS

Hongwei Chen, Jinling Liang, Zidong Wang

ABSTRACT

Autonomous Boolean networks (ABNs), which are developed to model the Boolean networks (BNs) with regulatory delays, are well known for their advantages of characterizing the intrinsic evolution rules of biological systems such as the gene regulatory networks. As a special type of ABNs with binary inputs, the autonomous Boolean control networks (ABCNs) are introduced for designing and analyzing the therapeutic intervention strategies where the binary inputs represent whether a certain medicine is dominated or not. An important problem in the therapeutic intervention is to design a control sequence steering an ABCN from an undesirable location (implying a diseased state) to a desirable one (corresponding to a healthy state). Motivated by such background, this paper aims to investigate the reachability and controllability of ABCNs with pinning controllers. Several necessary and sufficient criteria are provided by resorting to the semi-tensor product techniques of matrices. Moreover, an effective pinning control algorithm is presented for steering an ABCN from any given states to the desired state in the shortest time period. Numerical examples are also presented to demonstrate the results obtained. More... »

PAGES

070107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11432-016-5579-8

DOI

http://dx.doi.org/10.1007/s11432-016-5579-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010509951


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "Department of Mathematics, Southeast University, 210096, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hongwei", 
        "id": "sg:person.011107417611.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107417611.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "Department of Mathematics, Southeast University, 210096, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Jinling", 
        "id": "sg:person.01207340273.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207340273.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdulaziz University", 
          "id": "https://www.grid.ac/institutes/grid.412125.1", 
          "name": [
            "Department of Computer Science, Brunel University London, UB8 3PH, Uxbridge, Middlesex, UK", 
            "Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zidong", 
        "id": "sg:person.0707123563.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707123563.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.automatica.2012.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000274299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001775987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2014.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010681950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2014.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013023628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014968354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-005-7009-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014979836", 
          "https://doi.org/10.1007/s10955-005-7009-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-005-7009-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014979836", 
          "https://doi.org/10.1007/s10955-005-7009-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2012.05.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015779016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2012.0574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017321817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.2.1.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019815147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2006.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022085983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-013-4851-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022313238", 
          "https://doi.org/10.1007/s11432-013-4851-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(69)90015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023348122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(03)00174-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(03)00174-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2008.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027761758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027811221", 
          "https://doi.org/10.1038/nature10543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(00)81194-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034260179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2011.01.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035950787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037485827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2015.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043243932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2013.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043585523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-012-4651-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050250060", 
          "https://doi.org/10.1007/s11432-012-4651-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2012.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050887344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.045202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052588002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.045202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052588002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4928739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058095178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/12/125010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2010.2043294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061477555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2010.2101430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061477872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2012.2231592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2013.2259957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2013.2294821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2014.2298731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2015.2478123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061479720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2012.2215626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2246187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2449274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "Autonomous Boolean networks (ABNs), which are developed to model the Boolean networks (BNs) with regulatory delays, are well known for their advantages of characterizing the intrinsic evolution rules of biological systems such as the gene regulatory networks. As a special type of ABNs with binary inputs, the autonomous Boolean control networks (ABCNs) are introduced for designing and analyzing the therapeutic intervention strategies where the binary inputs represent whether a certain medicine is dominated or not. An important problem in the therapeutic intervention is to design a control sequence steering an ABCN from an undesirable location (implying a diseased state) to a desirable one (corresponding to a healthy state). Motivated by such background, this paper aims to investigate the reachability and controllability of ABCNs with pinning controllers. Several necessary and sufficient criteria are provided by resorting to the semi-tensor product techniques of matrices. Moreover, an effective pinning control algorithm is presented for steering an ABCN from any given states to the desired state in the shortest time period. Numerical examples are also presented to demonstrate the results obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11432-016-5579-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135989", 
        "issn": [
          "1009-2757", 
          "1674-733X"
        ], 
        "name": "Science China Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Pinning controllability of autonomous Boolean control networks", 
    "pagination": "070107", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3211e37eaafd2b90ac4ce3e54e0566cad587d1d1d599b87d6b27565bcafa2f97"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11432-016-5579-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010509951"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11432-016-5579-8", 
      "https://app.dimensions.ai/details/publication/pub.1010509951"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87088_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11432-016-5579-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-5579-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-5579-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-5579-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-5579-8'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11432-016-5579-8 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nd981a55d925947fca37a189598bd74a9
4 schema:citation sg:pub.10.1007/s10955-005-7009-y
5 sg:pub.10.1007/s11432-012-4651-2
6 sg:pub.10.1007/s11432-013-4851-4
7 sg:pub.10.1038/nature10543
8 https://doi.org/10.1002/rnc.1581
9 https://doi.org/10.1002/rnc.1703
10 https://doi.org/10.1016/0022-5193(69)90015-0
11 https://doi.org/10.1016/j.amc.2012.05.059
12 https://doi.org/10.1016/j.automatica.2009.03.006
13 https://doi.org/10.1016/j.automatica.2011.01.040
14 https://doi.org/10.1016/j.automatica.2012.03.022
15 https://doi.org/10.1016/j.automatica.2014.02.039
16 https://doi.org/10.1016/j.automatica.2014.05.005
17 https://doi.org/10.1016/j.automatica.2015.01.023
18 https://doi.org/10.1016/j.jtbi.2006.09.023
19 https://doi.org/10.1016/j.neunet.2012.12.004
20 https://doi.org/10.1016/j.neunet.2013.05.012
21 https://doi.org/10.1016/j.physd.2008.07.006
22 https://doi.org/10.1016/s0167-2789(03)00174-x
23 https://doi.org/10.1016/s0896-6273(00)81194-0
24 https://doi.org/10.1063/1.4928739
25 https://doi.org/10.1088/1367-2630/16/12/125010
26 https://doi.org/10.1098/rsif.2012.0574
27 https://doi.org/10.1103/physreve.80.045202
28 https://doi.org/10.1109/tac.2010.2043294
29 https://doi.org/10.1109/tac.2010.2101430
30 https://doi.org/10.1109/tac.2012.2231592
31 https://doi.org/10.1109/tac.2013.2259957
32 https://doi.org/10.1109/tac.2013.2294821
33 https://doi.org/10.1109/tac.2014.2298731
34 https://doi.org/10.1109/tac.2015.2478123
35 https://doi.org/10.1109/tnb.2012.2215626
36 https://doi.org/10.1109/tnnls.2013.2246187
37 https://doi.org/10.1109/tnnls.2015.2449274
38 https://doi.org/10.1146/annurev.genom.2.1.343
39 schema:datePublished 2016-07
40 schema:datePublishedReg 2016-07-01
41 schema:description Autonomous Boolean networks (ABNs), which are developed to model the Boolean networks (BNs) with regulatory delays, are well known for their advantages of characterizing the intrinsic evolution rules of biological systems such as the gene regulatory networks. As a special type of ABNs with binary inputs, the autonomous Boolean control networks (ABCNs) are introduced for designing and analyzing the therapeutic intervention strategies where the binary inputs represent whether a certain medicine is dominated or not. An important problem in the therapeutic intervention is to design a control sequence steering an ABCN from an undesirable location (implying a diseased state) to a desirable one (corresponding to a healthy state). Motivated by such background, this paper aims to investigate the reachability and controllability of ABCNs with pinning controllers. Several necessary and sufficient criteria are provided by resorting to the semi-tensor product techniques of matrices. Moreover, an effective pinning control algorithm is presented for steering an ABCN from any given states to the desired state in the shortest time period. Numerical examples are also presented to demonstrate the results obtained.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N3da676ddfa0245caa548da7452c34749
46 Nb5aab99ff58a460d994792a4dd1b32e0
47 sg:journal.1135989
48 schema:name Pinning controllability of autonomous Boolean control networks
49 schema:pagination 070107
50 schema:productId Na7e41802fcbc43d18e4e11c925b77983
51 Nab63928522354c81a732fe6d0edc1159
52 Nb903220398e847ada6ce8688f48f5de2
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010509951
54 https://doi.org/10.1007/s11432-016-5579-8
55 schema:sdDatePublished 2019-04-11T12:22
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Ndaad169e01aa45dca0f4c9cbdb5def30
58 schema:url https://link.springer.com/10.1007%2Fs11432-016-5579-8
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N3da676ddfa0245caa548da7452c34749 schema:volumeNumber 59
63 rdf:type schema:PublicationVolume
64 N5b3747063364488181f369cef45a3d27 rdf:first sg:person.0707123563.14
65 rdf:rest rdf:nil
66 N5e4b1af9e0534a07bd1e73e680e0d0ac rdf:first sg:person.01207340273.78
67 rdf:rest N5b3747063364488181f369cef45a3d27
68 Na7e41802fcbc43d18e4e11c925b77983 schema:name dimensions_id
69 schema:value pub.1010509951
70 rdf:type schema:PropertyValue
71 Nab63928522354c81a732fe6d0edc1159 schema:name doi
72 schema:value 10.1007/s11432-016-5579-8
73 rdf:type schema:PropertyValue
74 Nb5aab99ff58a460d994792a4dd1b32e0 schema:issueNumber 7
75 rdf:type schema:PublicationIssue
76 Nb903220398e847ada6ce8688f48f5de2 schema:name readcube_id
77 schema:value 3211e37eaafd2b90ac4ce3e54e0566cad587d1d1d599b87d6b27565bcafa2f97
78 rdf:type schema:PropertyValue
79 Nd981a55d925947fca37a189598bd74a9 rdf:first sg:person.011107417611.23
80 rdf:rest N5e4b1af9e0534a07bd1e73e680e0d0ac
81 Ndaad169e01aa45dca0f4c9cbdb5def30 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
87 schema:name Applied Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1135989 schema:issn 1009-2757
90 1674-733X
91 schema:name Science China Information Sciences
92 rdf:type schema:Periodical
93 sg:person.011107417611.23 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
94 schema:familyName Chen
95 schema:givenName Hongwei
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107417611.23
97 rdf:type schema:Person
98 sg:person.01207340273.78 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
99 schema:familyName Liang
100 schema:givenName Jinling
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207340273.78
102 rdf:type schema:Person
103 sg:person.0707123563.14 schema:affiliation https://www.grid.ac/institutes/grid.412125.1
104 schema:familyName Wang
105 schema:givenName Zidong
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707123563.14
107 rdf:type schema:Person
108 sg:pub.10.1007/s10955-005-7009-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014979836
109 https://doi.org/10.1007/s10955-005-7009-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s11432-012-4651-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050250060
112 https://doi.org/10.1007/s11432-012-4651-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11432-013-4851-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022313238
115 https://doi.org/10.1007/s11432-013-4851-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature10543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027811221
118 https://doi.org/10.1038/nature10543
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/rnc.1581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014968354
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/rnc.1703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037485827
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-5193(69)90015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023348122
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.amc.2012.05.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015779016
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.automatica.2009.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001775987
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.automatica.2011.01.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035950787
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.automatica.2012.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000274299
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.automatica.2014.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010681950
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.automatica.2014.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013023628
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.automatica.2015.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043243932
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jtbi.2006.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022085983
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.neunet.2012.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050887344
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.neunet.2013.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043585523
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.physd.2008.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027761758
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0167-2789(03)00174-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023745952
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0896-6273(00)81194-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034260179
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.4928739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058095178
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/1367-2630/16/12/125010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136418
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1098/rsif.2012.0574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017321817
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.80.045202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052588002
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tac.2010.2043294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061477555
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tac.2010.2101430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061477872
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tac.2012.2231592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478609
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tac.2013.2259957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478756
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tac.2013.2294821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478972
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tac.2014.2298731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478991
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tac.2015.2478123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479720
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tnb.2012.2215626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713968
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tnnls.2013.2246187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718258
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tnnls.2015.2449274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718901
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1146/annurev.genom.2.1.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019815147
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
183 schema:name Department of Mathematics, Southeast University, 210096, Nanjing, China
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.412125.1 schema:alternateName King Abdulaziz University
186 schema:name Department of Computer Science, Brunel University London, UB8 3PH, Uxbridge, Middlesex, UK
187 Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...