Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

Nianyin Zeng, Zidong Wang, Hong Zhang

ABSTRACT

This paper is concerned with the problem of learning structure of the lateral flow immunoassay (LFIA) devices via short but available time series of the experiment measurement. The model for the LFIA is considered as a nonlinear state-space model that includes equations describing both the biochemical reaction process of LFIA system and the observation output. Especially, the time-delays occurring among the biochemical reactions are considered in the established model. Furthermore, we utilize the unscented Kalman filter (UKF) algorithm to simultaneously identify not only the states but also the parameters of the improved state-space model by using short but high-dimensional experiment data in terms of images. It is shown via experiment results that the UKF approach is particularly suitable for modelling the LFIA devices. The identified model with time-delay is of great significance for the quantitative analysis of LFIA in both the accurate prediction of the dynamic process of the concentration distribution of the antigens/antibodies and the performance optimization of the LFIA devices. More... »

PAGES

112204

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11432-016-0280-9

DOI

http://dx.doi.org/10.1007/s11432-016-0280-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008708967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "Department of Instrumental and Electrical Engineering, Xiamen University, 361005, Fujian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Nianyin", 
        "id": "sg:person.01033156740.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033156740.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdulaziz University", 
          "id": "https://www.grid.ac/institutes/grid.412125.1", 
          "name": [
            "Department of Computer Science, Brunel University London, UB8 3PH, Uxbridge, Middlesex, UK", 
            "Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zidong", 
        "id": "sg:person.0707123563.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707123563.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "Department of Instrumental and Electrical Engineering, Xiamen University, 361005, Fujian, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hong", 
        "id": "sg:person.010522667247.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522667247.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ab.2003.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007937718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2003.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007937718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12559-016-9396-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009342106", 
          "https://doi.org/10.1007/s12559-016-9396-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010688761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013267646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-015-5460-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013340898", 
          "https://doi.org/10.1007/s11432-015-5460-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2003.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013568892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.08.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016503562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2009.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017651973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/cvi.00218-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020534459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-006-0549-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022561762", 
          "https://doi.org/10.1007/s00216-006-0549-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-006-0549-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022561762", 
          "https://doi.org/10.1007/s00216-006-0549-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0003758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023675227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cccn.2004.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024190177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024845765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028967803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodcont.2006.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029585022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079.2014.973730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029912058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079.2014.973729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030189589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-007-1642-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030363584", 
          "https://doi.org/10.1007/s00216-007-1642-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2007.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031301868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2008.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033600211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02652030701561452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034910903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047134608x.w1046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036735154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047134608x.w1046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036735154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037556185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-014-5172-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046827237", 
          "https://doi.org/10.1007/s11432-014-5172-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047330557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es070194j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055500380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es070194j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055500380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01926230490430728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058308073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01926230490430728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058308073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2007.357130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061484892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2007.4285348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061484919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2011.5705660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061485465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2007.914674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2011.2106502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2013.2260160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2011.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2015.2409373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2014.2305394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2011.2171193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061712794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2008.2000149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2013.2262956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061821811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iwisa.2010.5473363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094196148"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "This paper is concerned with the problem of learning structure of the lateral flow immunoassay (LFIA) devices via short but available time series of the experiment measurement. The model for the LFIA is considered as a nonlinear state-space model that includes equations describing both the biochemical reaction process of LFIA system and the observation output. Especially, the time-delays occurring among the biochemical reactions are considered in the established model. Furthermore, we utilize the unscented Kalman filter (UKF) algorithm to simultaneously identify not only the states but also the parameters of the improved state-space model by using short but high-dimensional experiment data in terms of images. It is shown via experiment results that the UKF approach is particularly suitable for modelling the LFIA devices. The identified model with time-delay is of great significance for the quantitative analysis of LFIA in both the accurate prediction of the dynamic process of the concentration distribution of the antigens/antibodies and the performance optimization of the LFIA devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11432-016-0280-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135989", 
        "issn": [
          "1009-2757", 
          "1674-733X"
        ], 
        "name": "Science China Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter", 
    "pagination": "112204", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "297e1c26eeadea878098616d956f52dcdbc95bf61dae02f7d2529b1f9936b2b2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11432-016-0280-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008708967"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11432-016-0280-9", 
      "https://app.dimensions.ai/details/publication/pub.1008708967"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11432-016-0280-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-0280-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-0280-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-0280-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11432-016-0280-9'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11432-016-0280-9 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N0db8cf0d9c9845d099ba0867c5c8f8b1
4 schema:citation sg:pub.10.1007/s00216-006-0549-4
5 sg:pub.10.1007/s00216-007-1642-z
6 sg:pub.10.1007/s11432-014-5172-y
7 sg:pub.10.1007/s11432-015-5460-1
8 sg:pub.10.1007/s12559-016-9396-6
9 https://doi.org/10.1002/047134608x.w1046
10 https://doi.org/10.1016/j.ab.2003.07.011
11 https://doi.org/10.1016/j.ab.2003.12.019
12 https://doi.org/10.1016/j.bios.2008.11.004
13 https://doi.org/10.1016/j.cccn.2004.05.010
14 https://doi.org/10.1016/j.envpol.2007.12.020
15 https://doi.org/10.1016/j.eswa.2013.08.069
16 https://doi.org/10.1016/j.foodcont.2006.05.005
17 https://doi.org/10.1016/j.ijleo.2009.04.004
18 https://doi.org/10.1016/j.neucom.2015.10.017
19 https://doi.org/10.1016/j.neucom.2015.10.019
20 https://doi.org/10.1016/j.neucom.2015.11.046
21 https://doi.org/10.1016/j.neucom.2015.11.079
22 https://doi.org/10.1016/j.neucom.2015.11.089
23 https://doi.org/10.1021/es070194j
24 https://doi.org/10.1080/01926230490430728
25 https://doi.org/10.1080/02652030701561452
26 https://doi.org/10.1080/03081079.2014.973729
27 https://doi.org/10.1080/03081079.2014.973730
28 https://doi.org/10.1093/bioinformatics/btm510
29 https://doi.org/10.1109/iwisa.2010.5473363
30 https://doi.org/10.1109/taes.2007.357130
31 https://doi.org/10.1109/taes.2007.4285348
32 https://doi.org/10.1109/taes.2011.5705660
33 https://doi.org/10.1109/tbme.2007.914674
34 https://doi.org/10.1109/tbme.2011.2106502
35 https://doi.org/10.1109/tbme.2013.2260160
36 https://doi.org/10.1109/tcbb.2011.140
37 https://doi.org/10.1109/tcyb.2015.2409373
38 https://doi.org/10.1109/tmi.2014.2305394
39 https://doi.org/10.1109/tnano.2011.2171193
40 https://doi.org/10.1109/tnb.2008.2000149
41 https://doi.org/10.1109/tvt.2013.2262956
42 https://doi.org/10.1128/cvi.00218-07
43 https://doi.org/10.1371/journal.pone.0003758
44 schema:datePublished 2016-11
45 schema:datePublishedReg 2016-11-01
46 schema:description This paper is concerned with the problem of learning structure of the lateral flow immunoassay (LFIA) devices via short but available time series of the experiment measurement. The model for the LFIA is considered as a nonlinear state-space model that includes equations describing both the biochemical reaction process of LFIA system and the observation output. Especially, the time-delays occurring among the biochemical reactions are considered in the established model. Furthermore, we utilize the unscented Kalman filter (UKF) algorithm to simultaneously identify not only the states but also the parameters of the improved state-space model by using short but high-dimensional experiment data in terms of images. It is shown via experiment results that the UKF approach is particularly suitable for modelling the LFIA devices. The identified model with time-delay is of great significance for the quantitative analysis of LFIA in both the accurate prediction of the dynamic process of the concentration distribution of the antigens/antibodies and the performance optimization of the LFIA devices.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N42d6b6413f9a4a40ae5e47095f215f24
51 N5e00d4823d474ca8bee3deba89e79ab3
52 sg:journal.1135989
53 schema:name Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
54 schema:pagination 112204
55 schema:productId N52a0357000db45e3bf555f28ee600bb9
56 N68f538b16a3d4730b0f69a09769b58fd
57 Na4942669943d4b5ca0ea8223a970fed3
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708967
59 https://doi.org/10.1007/s11432-016-0280-9
60 schema:sdDatePublished 2019-04-11T12:27
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N89baa6ed600f4ca3a4339393fcaf575a
63 schema:url https://link.springer.com/10.1007%2Fs11432-016-0280-9
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0db8cf0d9c9845d099ba0867c5c8f8b1 rdf:first sg:person.01033156740.12
68 rdf:rest Ndcd86a90a441430eb57630bc6590f5a1
69 N42d6b6413f9a4a40ae5e47095f215f24 schema:issueNumber 11
70 rdf:type schema:PublicationIssue
71 N4fa0869391ea43998aac585c18d1f09a rdf:first sg:person.010522667247.76
72 rdf:rest rdf:nil
73 N52a0357000db45e3bf555f28ee600bb9 schema:name doi
74 schema:value 10.1007/s11432-016-0280-9
75 rdf:type schema:PropertyValue
76 N5e00d4823d474ca8bee3deba89e79ab3 schema:volumeNumber 59
77 rdf:type schema:PublicationVolume
78 N68f538b16a3d4730b0f69a09769b58fd schema:name dimensions_id
79 schema:value pub.1008708967
80 rdf:type schema:PropertyValue
81 N89baa6ed600f4ca3a4339393fcaf575a schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Na4942669943d4b5ca0ea8223a970fed3 schema:name readcube_id
84 schema:value 297e1c26eeadea878098616d956f52dcdbc95bf61dae02f7d2529b1f9936b2b2
85 rdf:type schema:PropertyValue
86 Ndcd86a90a441430eb57630bc6590f5a1 rdf:first sg:person.0707123563.14
87 rdf:rest N4fa0869391ea43998aac585c18d1f09a
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
92 schema:name Applied Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1135989 schema:issn 1009-2757
95 1674-733X
96 schema:name Science China Information Sciences
97 rdf:type schema:Periodical
98 sg:person.01033156740.12 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
99 schema:familyName Zeng
100 schema:givenName Nianyin
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033156740.12
102 rdf:type schema:Person
103 sg:person.010522667247.76 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
104 schema:familyName Zhang
105 schema:givenName Hong
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522667247.76
107 rdf:type schema:Person
108 sg:person.0707123563.14 schema:affiliation https://www.grid.ac/institutes/grid.412125.1
109 schema:familyName Wang
110 schema:givenName Zidong
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707123563.14
112 rdf:type schema:Person
113 sg:pub.10.1007/s00216-006-0549-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022561762
114 https://doi.org/10.1007/s00216-006-0549-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00216-007-1642-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030363584
117 https://doi.org/10.1007/s00216-007-1642-z
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11432-014-5172-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046827237
120 https://doi.org/10.1007/s11432-014-5172-y
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11432-015-5460-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013340898
123 https://doi.org/10.1007/s11432-015-5460-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s12559-016-9396-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009342106
126 https://doi.org/10.1007/s12559-016-9396-6
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/047134608x.w1046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036735154
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ab.2003.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007937718
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ab.2003.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013568892
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.bios.2008.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033600211
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cccn.2004.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024190177
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.envpol.2007.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031301868
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.eswa.2013.08.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016503562
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.foodcont.2006.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029585022
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijleo.2009.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017651973
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neucom.2015.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047330557
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neucom.2015.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028967803
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.neucom.2015.11.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013267646
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.neucom.2015.11.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010688761
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.neucom.2015.11.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037556185
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/es070194j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055500380
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/01926230490430728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058308073
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/02652030701561452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034910903
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/03081079.2014.973729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030189589
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/03081079.2014.973730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029912058
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/btm510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024845765
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/iwisa.2010.5473363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094196148
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/taes.2007.357130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061484892
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/taes.2007.4285348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061484919
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/taes.2011.5705660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061485465
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tbme.2007.914674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527271
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tbme.2011.2106502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528316
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tbme.2013.2260160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529251
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tcbb.2011.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540882
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tcyb.2015.2409373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579959
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tmi.2014.2305394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696254
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tnano.2011.2171193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061712794
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/tnb.2008.2000149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713782
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/tvt.2013.2262956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061821811
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1128/cvi.00218-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020534459
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pone.0003758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023675227
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
199 schema:name Department of Instrumental and Electrical Engineering, Xiamen University, 361005, Fujian, China
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.412125.1 schema:alternateName King Abdulaziz University
202 schema:name Department of Computer Science, Brunel University London, UB8 3PH, Uxbridge, Middlesex, UK
203 Faculty of Engineering, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...