Optimizing widths with PSO for center selection of Gaussian radial basis function networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

ZhongQiu Zhao, XinDong Wu, CanYi Lu, Herve Glotin, Jun Gao

ABSTRACT

The radial basis function (RBF) centers play different roles in determining the classification capability of a Gaussian radial basis function neural network (GRBFNN) and should hold different width values. However, it is very hard and time-consuming to optimize the centers and widths at the same time. In this paper, we introduce a new insight into this problem. We explore the impact of the definition of widths on the selection of the centers, propose an optimization algorithm of the RBF widths in order to select proper centers from the center candidate pool, and improve the classification performance of the GRBFNN. The design of the objective function of the optimization algorithm is based on the local mapping capability of each Gaussian RBF. Further, in the design of the objective function, we also handle the imbalanced problem which may occur even when different local regions have the same number of examples. Finally, the recursive orthogonal least square (ROLS) and genetic algorithm (GA), which are usually adopted to optimize the RBF centers, are separately used to select the centers from the center candidates with the initialized widths, in order to testify the validity of our proposed width initialization strategy on the selection of centers. Our experimental results show that, compared with the heuristic width setting method, the width optimization strategy makes the selected centers more appropriate, and improves the classification performance of the GRBFNN. Moreover, the GRBFNN constructed by our method can attain better classification performance than the RBF LS-SVM, which is a state-of-the-art classifier. More... »

PAGES

1-17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11432-013-4850-5

DOI

http://dx.doi.org/10.1007/s11432-013-4850-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021203180


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "College of Computer Science and Information Engineering, Hefei University of Technology, 230009, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "ZhongQiu", 
        "id": "sg:person.012003615257.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012003615257.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vermont", 
          "id": "https://www.grid.ac/institutes/grid.59062.38", 
          "name": [
            "College of Computer Science and Information Engineering, Hefei University of Technology, 230009, Hefei, China", 
            "Department of Computer Science, University of Vermont, 05405, Burlington, Vermont, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "XinDong", 
        "id": "sg:person.016521501713.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521501713.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, China", 
            "Department of Automation, University of Science and Technology of China, 230026, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "CanYi", 
        "id": "sg:person.01322625240.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322625240.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lab. Sciences de l\u2019Information et des Systmes, University of Sud-Toulon Var, R229-BP20132-83957, La Garde, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glotin", 
        "givenName": "Herve", 
        "id": "sg:person.016622300103.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.256896.6", 
          "name": [
            "College of Computer Science and Information Engineering, Hefei University of Technology, 230009, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Jun", 
        "id": "sg:person.013444733505.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013444733505.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80038-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000349916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2008.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011097965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2004.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018761791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1989.1.2.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018769097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2006.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019234469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0476-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023498829", 
          "https://doi.org/10.1007/s10115-011-0476-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85920-8_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025673665", 
          "https://doi.org/10.1007/978-3-540-85920-8_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85920-8_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025673665", 
          "https://doi.org/10.1007/978-3-540-85920-8_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(02)00447-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027205516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(02)00447-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027205516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0385-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031741252", 
          "https://doi.org/10.1007/s10115-011-0385-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0456-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046090029", 
          "https://doi.org/10.1007/s10115-011-0456-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-011-0458-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049611967", 
          "https://doi.org/10.1007/s10115-011-0458-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2007.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050107823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.58326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.788663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.839002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2011.5705681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061485486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2006.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2002.1000134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.894058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2008.2004370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2003.810911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2008.2005124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065701000734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062898850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094479314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2000.906151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095357802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491899", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491899", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "The radial basis function (RBF) centers play different roles in determining the classification capability of a Gaussian radial basis function neural network (GRBFNN) and should hold different width values. However, it is very hard and time-consuming to optimize the centers and widths at the same time. In this paper, we introduce a new insight into this problem. We explore the impact of the definition of widths on the selection of the centers, propose an optimization algorithm of the RBF widths in order to select proper centers from the center candidate pool, and improve the classification performance of the GRBFNN. The design of the objective function of the optimization algorithm is based on the local mapping capability of each Gaussian RBF. Further, in the design of the objective function, we also handle the imbalanced problem which may occur even when different local regions have the same number of examples. Finally, the recursive orthogonal least square (ROLS) and genetic algorithm (GA), which are usually adopted to optimize the RBF centers, are separately used to select the centers from the center candidates with the initialized widths, in order to testify the validity of our proposed width initialization strategy on the selection of centers. Our experimental results show that, compared with the heuristic width setting method, the width optimization strategy makes the selected centers more appropriate, and improves the classification performance of the GRBFNN. Moreover, the GRBFNN constructed by our method can attain better classification performance than the RBF LS-SVM, which is a state-of-the-art classifier.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11432-013-4850-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135989", 
        "issn": [
          "1009-2757", 
          "1674-733X"
        ], 
        "name": "Science China Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Optimizing widths with PSO for center selection of Gaussian radial basis function networks", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6505d621d5ce9e59dc1c95bb76e308ccf300d18a2dbe0e73e621e04f5121ba16"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11432-013-4850-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021203180"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11432-013-4850-5", 
      "https://app.dimensions.ai/details/publication/pub.1021203180"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11432-013-4850-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11432-013-4850-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11432-013-4850-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11432-013-4850-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11432-013-4850-5'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11432-013-4850-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne164f20b350f4a00aac571ca60e4074e
4 schema:citation sg:pub.10.1007/978-3-540-85920-8_59
5 sg:pub.10.1007/s10115-011-0385-5
6 sg:pub.10.1007/s10115-011-0456-7
7 sg:pub.10.1007/s10115-011-0458-5
8 sg:pub.10.1007/s10115-011-0476-3
9 https://app.dimensions.ai/details/publication/pub.1109491899
10 https://doi.org/10.1016/j.artmed.2006.08.001
11 https://doi.org/10.1016/j.neucom.2007.09.007
12 https://doi.org/10.1016/j.patrec.2004.05.008
13 https://doi.org/10.1016/j.patrec.2008.06.002
14 https://doi.org/10.1016/s0020-0190(02)00447-7
15 https://doi.org/10.1016/s0893-6080(05)80038-3
16 https://doi.org/10.1109/5.58326
17 https://doi.org/10.1109/72.788663
18 https://doi.org/10.1109/72.839002
19 https://doi.org/10.1109/cvpr.2010.5540215
20 https://doi.org/10.1109/icpr.2000.906151
21 https://doi.org/10.1109/taes.2011.5705681
22 https://doi.org/10.1109/tkde.2006.17
23 https://doi.org/10.1109/tnn.2002.1000134
24 https://doi.org/10.1109/tnn.2007.894058
25 https://doi.org/10.1109/tnn.2008.2004370
26 https://doi.org/10.1109/tpami.2005.162
27 https://doi.org/10.1109/tsmcb.2003.810911
28 https://doi.org/10.1109/tsmcb.2008.2005124
29 https://doi.org/10.1142/s0129065701000734
30 https://doi.org/10.1162/neco.1989.1.2.281
31 schema:datePublished 2014-05
32 schema:datePublishedReg 2014-05-01
33 schema:description The radial basis function (RBF) centers play different roles in determining the classification capability of a Gaussian radial basis function neural network (GRBFNN) and should hold different width values. However, it is very hard and time-consuming to optimize the centers and widths at the same time. In this paper, we introduce a new insight into this problem. We explore the impact of the definition of widths on the selection of the centers, propose an optimization algorithm of the RBF widths in order to select proper centers from the center candidate pool, and improve the classification performance of the GRBFNN. The design of the objective function of the optimization algorithm is based on the local mapping capability of each Gaussian RBF. Further, in the design of the objective function, we also handle the imbalanced problem which may occur even when different local regions have the same number of examples. Finally, the recursive orthogonal least square (ROLS) and genetic algorithm (GA), which are usually adopted to optimize the RBF centers, are separately used to select the centers from the center candidates with the initialized widths, in order to testify the validity of our proposed width initialization strategy on the selection of centers. Our experimental results show that, compared with the heuristic width setting method, the width optimization strategy makes the selected centers more appropriate, and improves the classification performance of the GRBFNN. Moreover, the GRBFNN constructed by our method can attain better classification performance than the RBF LS-SVM, which is a state-of-the-art classifier.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N17ce4ed64c6b4999bc92b45cb338a943
38 N713c3fbc97bc40ae9b143c264bbff579
39 sg:journal.1135989
40 schema:name Optimizing widths with PSO for center selection of Gaussian radial basis function networks
41 schema:pagination 1-17
42 schema:productId N6984827b3b3d42d49a584b41737c5acc
43 N6a3df8c7ec5d4146b2a0e5406e7ba73a
44 N7130af1012a3480b8e902876de1935c4
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021203180
46 https://doi.org/10.1007/s11432-013-4850-5
47 schema:sdDatePublished 2019-04-10T22:44
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N56d90e4a9695461ab990ea0c3fe6c3a4
50 schema:url http://link.springer.com/10.1007%2Fs11432-013-4850-5
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0cbdb6d4f9174a139a40db1469747c13 rdf:first sg:person.013444733505.85
55 rdf:rest rdf:nil
56 N17ce4ed64c6b4999bc92b45cb338a943 schema:issueNumber 5
57 rdf:type schema:PublicationIssue
58 N56d90e4a9695461ab990ea0c3fe6c3a4 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N652d2a85b8e34084b00e6e8cb438ce3c rdf:first sg:person.016521501713.27
61 rdf:rest Naad8e7728878446cbb73a45c72ef9ce5
62 N6984827b3b3d42d49a584b41737c5acc schema:name dimensions_id
63 schema:value pub.1021203180
64 rdf:type schema:PropertyValue
65 N6a3df8c7ec5d4146b2a0e5406e7ba73a schema:name doi
66 schema:value 10.1007/s11432-013-4850-5
67 rdf:type schema:PropertyValue
68 N7130af1012a3480b8e902876de1935c4 schema:name readcube_id
69 schema:value 6505d621d5ce9e59dc1c95bb76e308ccf300d18a2dbe0e73e621e04f5121ba16
70 rdf:type schema:PropertyValue
71 N713c3fbc97bc40ae9b143c264bbff579 schema:volumeNumber 57
72 rdf:type schema:PublicationVolume
73 Na3090eb370494a41abb87369443e6b89 rdf:first sg:person.016622300103.82
74 rdf:rest N0cbdb6d4f9174a139a40db1469747c13
75 Naad8e7728878446cbb73a45c72ef9ce5 rdf:first sg:person.01322625240.14
76 rdf:rest Na3090eb370494a41abb87369443e6b89
77 Ne164f20b350f4a00aac571ca60e4074e rdf:first sg:person.012003615257.18
78 rdf:rest N652d2a85b8e34084b00e6e8cb438ce3c
79 Nf983114adb0142408612a9f1fbb8d174 schema:name Lab. Sciences de l’Information et des Systmes, University of Sud-Toulon Var, R229-BP20132-83957, La Garde, France
80 rdf:type schema:Organization
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:journal.1135989 schema:issn 1009-2757
88 1674-733X
89 schema:name Science China Information Sciences
90 rdf:type schema:Periodical
91 sg:person.012003615257.18 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
92 schema:familyName Zhao
93 schema:givenName ZhongQiu
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012003615257.18
95 rdf:type schema:Person
96 sg:person.01322625240.14 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
97 schema:familyName Lu
98 schema:givenName CanYi
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322625240.14
100 rdf:type schema:Person
101 sg:person.013444733505.85 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
102 schema:familyName Gao
103 schema:givenName Jun
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013444733505.85
105 rdf:type schema:Person
106 sg:person.016521501713.27 schema:affiliation https://www.grid.ac/institutes/grid.59062.38
107 schema:familyName Wu
108 schema:givenName XinDong
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016521501713.27
110 rdf:type schema:Person
111 sg:person.016622300103.82 schema:affiliation Nf983114adb0142408612a9f1fbb8d174
112 schema:familyName Glotin
113 schema:givenName Herve
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-540-85920-8_59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025673665
117 https://doi.org/10.1007/978-3-540-85920-8_59
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10115-011-0385-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031741252
120 https://doi.org/10.1007/s10115-011-0385-5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10115-011-0456-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046090029
123 https://doi.org/10.1007/s10115-011-0456-7
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10115-011-0458-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049611967
126 https://doi.org/10.1007/s10115-011-0458-5
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10115-011-0476-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023498829
129 https://doi.org/10.1007/s10115-011-0476-3
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1109491899 schema:CreativeWork
132 https://doi.org/10.1016/j.artmed.2006.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019234469
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.neucom.2007.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050107823
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.patrec.2004.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018761791
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.patrec.2008.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011097965
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0020-0190(02)00447-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027205516
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0893-6080(05)80038-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000349916
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/5.58326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179722
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/72.788663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219256
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/72.839002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219395
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/cvpr.2010.5540215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094479314
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/icpr.2000.906151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095357802
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/taes.2011.5705681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061485486
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tkde.2006.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661558
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tnn.2002.1000134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716422
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tnn.2007.894058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717205
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tnn.2008.2004370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717441
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tpami.2005.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742823
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tsmcb.2003.810911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796125
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tsmcb.2008.2005124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796870
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1142/s0129065701000734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898850
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1162/neco.1989.1.2.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018769097
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.256896.6 schema:alternateName Hefei University of Technology
175 schema:name College of Computer Science and Information Engineering, Hefei University of Technology, 230009, Hefei, China
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
178 schema:name Department of Automation, University of Science and Technology of China, 230026, Hefei, China
179 Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, 230031, Hefei, China
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.59062.38 schema:alternateName University of Vermont
182 schema:name College of Computer Science and Information Engineering, Hefei University of Technology, 230009, Hefei, China
183 Department of Computer Science, University of Vermont, 05405, Burlington, Vermont, USA
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...