An auto-focus algorithm for imaging of objects under a lossy earth from multi-frequency and multi-monostatic data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09

AUTHORS

YanLi Liu, LianLin Li, Fang Li

ABSTRACT

The problem of auto-focusing imaging of 2D dielectric objects imbedded in a lossy earth is considered. Under Born approximation, the half-space spectrum Green’s function is employed to formulate the half-space imaging algorithm from multi-frequency and multi-monostatic data. Hence the fast Fourier transform can be used to achieve real-time imaging in a very short computing time. Since the proposed algorithm has avoided the time-consuming regularization of a large-scale ill-posed matrix, the computing time can be greatly cut down. Inspired by the principle of time reversed imaging and the minimum entropy criterion, an auto-focusing imaging algorithm is presented to remove the image degradation caused by estimated error of the unknown dielectric parameters of the earth. Numerical results have shown that the proposed algorithm can provide good quality focused images for both low-contrast and high-contrast targets in a short computing time despite the inaccurate estimation of the earth electric parameters. The proposed algorithm can be extended to three-dimensional case naturally. More... »

PAGES

1880-1890

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11432-010-4046-1

DOI

http://dx.doi.org/10.1007/s11432-010-4046-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050712247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Science Library", 
          "id": "https://www.grid.ac/institutes/grid.458436.8", 
          "name": [
            "Institute of Electronics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "National Science Library, Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "YanLi", 
        "id": "sg:person.07642240351.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642240351.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Electronics", 
          "id": "https://www.grid.ac/institutes/grid.458464.f", 
          "name": [
            "Institute of Electronics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "LianLin", 
        "id": "sg:person.014460574214.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460574214.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Electronics", 
          "id": "https://www.grid.ac/institutes/grid.458464.f", 
          "name": [
            "Institute of Electronics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Fang", 
        "id": "sg:person.015730456757.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730456757.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0266-5611/17/1/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005345173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-2125(94)90039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013638797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-2125(94)90039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013638797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/8/1/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020724152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2478.1976.tb00934.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028226719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/63/12/202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032425550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/13/1/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042290808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3477.662762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061158225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.851784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.851967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.905242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.921410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/7.892658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061215652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.992560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061235674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.1984.350573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061607933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2007.897416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2007.905105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2009.2024690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2000.901058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095571928"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "The problem of auto-focusing imaging of 2D dielectric objects imbedded in a lossy earth is considered. Under Born approximation, the half-space spectrum Green\u2019s function is employed to formulate the half-space imaging algorithm from multi-frequency and multi-monostatic data. Hence the fast Fourier transform can be used to achieve real-time imaging in a very short computing time. Since the proposed algorithm has avoided the time-consuming regularization of a large-scale ill-posed matrix, the computing time can be greatly cut down. Inspired by the principle of time reversed imaging and the minimum entropy criterion, an auto-focusing imaging algorithm is presented to remove the image degradation caused by estimated error of the unknown dielectric parameters of the earth. Numerical results have shown that the proposed algorithm can provide good quality focused images for both low-contrast and high-contrast targets in a short computing time despite the inaccurate estimation of the earth electric parameters. The proposed algorithm can be extended to three-dimensional case naturally.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11432-010-4046-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135989", 
        "issn": [
          "1009-2757", 
          "1674-733X"
        ], 
        "name": "Science China Information Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "An auto-focus algorithm for imaging of objects under a lossy earth from multi-frequency and multi-monostatic data", 
    "pagination": "1880-1890", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1936a247e02905c9eaeb7a065cbe52b57922108c01d3999beac82e84f87ac2f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11432-010-4046-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050712247"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11432-010-4046-1", 
      "https://app.dimensions.ai/details/publication/pub.1050712247"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43229_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11432-010-4046-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-4046-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-4046-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-4046-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-4046-1'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11432-010-4046-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb35bf3e21ca34206af98ac21951cc881
4 schema:citation https://doi.org/10.1016/0165-2125(94)90039-6
5 https://doi.org/10.1088/0034-4885/63/12/202
6 https://doi.org/10.1088/0266-5611/13/1/004
7 https://doi.org/10.1088/0266-5611/17/1/201
8 https://doi.org/10.1088/0266-5611/8/1/008
9 https://doi.org/10.1109/3477.662762
10 https://doi.org/10.1109/36.851784
11 https://doi.org/10.1109/36.851967
12 https://doi.org/10.1109/36.905242
13 https://doi.org/10.1109/36.921410
14 https://doi.org/10.1109/7.892658
15 https://doi.org/10.1109/8.992560
16 https://doi.org/10.1109/icip.2000.901058
17 https://doi.org/10.1109/tgrs.1984.350573
18 https://doi.org/10.1109/tgrs.2007.897416
19 https://doi.org/10.1109/tgrs.2007.905105
20 https://doi.org/10.1109/tgrs.2009.2024690
21 https://doi.org/10.1111/j.1365-2478.1976.tb00934.x
22 schema:datePublished 2010-09
23 schema:datePublishedReg 2010-09-01
24 schema:description The problem of auto-focusing imaging of 2D dielectric objects imbedded in a lossy earth is considered. Under Born approximation, the half-space spectrum Green’s function is employed to formulate the half-space imaging algorithm from multi-frequency and multi-monostatic data. Hence the fast Fourier transform can be used to achieve real-time imaging in a very short computing time. Since the proposed algorithm has avoided the time-consuming regularization of a large-scale ill-posed matrix, the computing time can be greatly cut down. Inspired by the principle of time reversed imaging and the minimum entropy criterion, an auto-focusing imaging algorithm is presented to remove the image degradation caused by estimated error of the unknown dielectric parameters of the earth. Numerical results have shown that the proposed algorithm can provide good quality focused images for both low-contrast and high-contrast targets in a short computing time despite the inaccurate estimation of the earth electric parameters. The proposed algorithm can be extended to three-dimensional case naturally.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N4a39fc8b5665451c90b57f83147e579b
29 Ndb4a934bb2e549c0973d625de07cb53a
30 sg:journal.1135989
31 schema:name An auto-focus algorithm for imaging of objects under a lossy earth from multi-frequency and multi-monostatic data
32 schema:pagination 1880-1890
33 schema:productId N3c1a3a94422d497cb1c932d4f7b20474
34 Na25a4a133f2341e8a660691bf0cbdb44
35 Nfc409815941e4871b81c9c2a354100da
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050712247
37 https://doi.org/10.1007/s11432-010-4046-1
38 schema:sdDatePublished 2019-04-11T10:52
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N667b7e4fbb2a4abdb76181d024dd18de
41 schema:url http://link.springer.com/10.1007%2Fs11432-010-4046-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N05ea1b3a0a8141649c4a5f9e4bb3737a rdf:first sg:person.014460574214.00
46 rdf:rest N33957a7caa3d4ba096bec1cabcea1c75
47 N33957a7caa3d4ba096bec1cabcea1c75 rdf:first sg:person.015730456757.84
48 rdf:rest rdf:nil
49 N3c1a3a94422d497cb1c932d4f7b20474 schema:name readcube_id
50 schema:value f1936a247e02905c9eaeb7a065cbe52b57922108c01d3999beac82e84f87ac2f
51 rdf:type schema:PropertyValue
52 N4a39fc8b5665451c90b57f83147e579b schema:volumeNumber 53
53 rdf:type schema:PublicationVolume
54 N667b7e4fbb2a4abdb76181d024dd18de schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Na25a4a133f2341e8a660691bf0cbdb44 schema:name doi
57 schema:value 10.1007/s11432-010-4046-1
58 rdf:type schema:PropertyValue
59 Nb35bf3e21ca34206af98ac21951cc881 rdf:first sg:person.07642240351.25
60 rdf:rest N05ea1b3a0a8141649c4a5f9e4bb3737a
61 Ndb4a934bb2e549c0973d625de07cb53a schema:issueNumber 9
62 rdf:type schema:PublicationIssue
63 Nfc409815941e4871b81c9c2a354100da schema:name dimensions_id
64 schema:value pub.1050712247
65 rdf:type schema:PropertyValue
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:journal.1135989 schema:issn 1009-2757
73 1674-733X
74 schema:name Science China Information Sciences
75 rdf:type schema:Periodical
76 sg:person.014460574214.00 schema:affiliation https://www.grid.ac/institutes/grid.458464.f
77 schema:familyName Li
78 schema:givenName LianLin
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460574214.00
80 rdf:type schema:Person
81 sg:person.015730456757.84 schema:affiliation https://www.grid.ac/institutes/grid.458464.f
82 schema:familyName Li
83 schema:givenName Fang
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730456757.84
85 rdf:type schema:Person
86 sg:person.07642240351.25 schema:affiliation https://www.grid.ac/institutes/grid.458436.8
87 schema:familyName Liu
88 schema:givenName YanLi
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642240351.25
90 rdf:type schema:Person
91 https://doi.org/10.1016/0165-2125(94)90039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013638797
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1088/0034-4885/63/12/202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032425550
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1088/0266-5611/13/1/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042290808
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/0266-5611/17/1/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005345173
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0266-5611/8/1/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020724152
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/3477.662762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061158225
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/36.851784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162432
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/36.851967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162452
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/36.905242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162552
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/36.921410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162611
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/7.892658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061215652
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/8.992560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061235674
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/icip.2000.901058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095571928
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tgrs.1984.350573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061607933
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tgrs.2007.897416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610196
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tgrs.2007.905105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610336
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tgrs.2009.2024690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611097
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1365-2478.1976.tb00934.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028226719
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.458436.8 schema:alternateName National Science Library
128 schema:name Institute of Electronics, Chinese Academy of Sciences, 100190, Beijing, China
129 National Science Library, Chinese Academy of Sciences, 100049, Beijing, China
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.458464.f schema:alternateName Institute of Electronics
132 schema:name Institute of Electronics, Chinese Academy of Sciences, 100190, Beijing, China
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...