Direct adaptive neural control for stabilization of nonlinear time-delay systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04

AUTHORS

Min Wang, SiYing Zhang, Bing Chen, Fei Luo

ABSTRACT

This paper is concerned with the problem of adaptive neural control for uncertain nonlinear strict-feedback time-delay systems with unknown virtual control coefficients. Radial basis function (RBF) neural networks are employed to directly approximate unknown virtual control signals, and then the adaptive neural control law is constructed by Lyapunov-Krasovskii functionals and backstepping. In order to avoid encountering a large number of adaptive parameters when using RBF neural networks as function approximators, an unknown constant, instead of unknown neural weights themselves, is employed as the estimated parameter. This technique makes only one adaptive parameter tuned online, thus significantly alleviating the burdensome computation. Meanwhile, some continuous functions are introduced to overcome the design difficulty originating from the use of one adaptive parameter. The proposed adaptive control guarantees the boundedness of all the signals in the closed-loop system. Simulation studies are presented to illustrate the effectiveness of the scheme. More... »

PAGES

800-812

References to SciGraph publications

  • 2006-04. Adaptive robust control of nonholonomic systems with stochastic disturbances in SCIENCE IN CHINA SERIES F INFORMATION SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11432-010-0075-z

    DOI

    http://dx.doi.org/10.1007/s11432-010-0075-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030569090


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Qingdao University", 
              "id": "https://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "College of Automation, South China University of Technology, 510641, Guangzhou, China", 
                "Institute of Complexity Science, Qingdao University, 266071, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Min", 
            "id": "sg:person.01104613771.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104613771.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao University", 
              "id": "https://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Institute of Complexity Science, Qingdao University, 266071, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "SiYing", 
            "id": "sg:person.010422505671.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422505671.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao University", 
              "id": "https://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Institute of Complexity Science, Qingdao University, 266071, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Bing", 
            "id": "sg:person.0603773723.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603773723.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao University", 
              "id": "https://www.grid.ac/institutes/grid.410645.2", 
              "name": [
                "Institute of Complexity Science, Qingdao University, 266071, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luo", 
            "givenName": "Fei", 
            "id": "sg:person.013555723105.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013555723105.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.nonrwa.2007.08.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001527490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.automatica.2007.04.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008887650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.automatica.2006.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011517254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0005-1098(01)00254-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011809742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11432-006-0189-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014202974", 
              "https://doi.org/10.1007/s11432-006-0189-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-6911(97)00098-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024451882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0005-1098(00)00116-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026654269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fss.2007.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028905388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fss.2007.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036596159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.automatica.2006.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042813700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.automatica.2007.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043169028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fss.2007.12.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045405320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.automatica.2006.08.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/002071798222280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053596357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.165588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.363477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.870049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.100933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061242742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/9.847117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061246296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/91.824777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061247986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2002.802754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061475080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2003.819287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061475469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2005.854652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061476009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2002.804306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2004.826130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2005.844907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2005.844907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmca.2004.824870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061794980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2003.817055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2005.846645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2005.846645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2008.918568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012992232555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880910"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04", 
        "datePublishedReg": "2010-04-01", 
        "description": "This paper is concerned with the problem of adaptive neural control for uncertain nonlinear strict-feedback time-delay systems with unknown virtual control coefficients. Radial basis function (RBF) neural networks are employed to directly approximate unknown virtual control signals, and then the adaptive neural control law is constructed by Lyapunov-Krasovskii functionals and backstepping. In order to avoid encountering a large number of adaptive parameters when using RBF neural networks as function approximators, an unknown constant, instead of unknown neural weights themselves, is employed as the estimated parameter. This technique makes only one adaptive parameter tuned online, thus significantly alleviating the burdensome computation. Meanwhile, some continuous functions are introduced to overcome the design difficulty originating from the use of one adaptive parameter. The proposed adaptive control guarantees the boundedness of all the signals in the closed-loop system. Simulation studies are presented to illustrate the effectiveness of the scheme.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11432-010-0075-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135989", 
            "issn": [
              "1009-2757", 
              "1674-733X"
            ], 
            "name": "Science China Information Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "name": "Direct adaptive neural control for stabilization of nonlinear time-delay systems", 
        "pagination": "800-812", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "91a0ca7f85cff407de8cfff3b0a4e46c6c6d9ccd0c72cd1df881cc7780cb1d40"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11432-010-0075-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030569090"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11432-010-0075-z", 
          "https://app.dimensions.ai/details/publication/pub.1030569090"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54298_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11432-010-0075-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-0075-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-0075-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-0075-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11432-010-0075-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11432-010-0075-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4a7c7d24b4824fecacbf56f3a2808d76
    4 schema:citation sg:pub.10.1007/s11432-006-0189-5
    5 https://doi.org/10.1016/j.automatica.2006.01.004
    6 https://doi.org/10.1016/j.automatica.2006.08.003
    7 https://doi.org/10.1016/j.automatica.2006.08.015
    8 https://doi.org/10.1016/j.automatica.2007.04.020
    9 https://doi.org/10.1016/j.automatica.2007.06.008
    10 https://doi.org/10.1016/j.fss.2007.02.018
    11 https://doi.org/10.1016/j.fss.2007.06.001
    12 https://doi.org/10.1016/j.fss.2007.12.022
    13 https://doi.org/10.1016/j.nonrwa.2007.08.025
    14 https://doi.org/10.1016/s0005-1098(00)00116-3
    15 https://doi.org/10.1016/s0005-1098(01)00254-0
    16 https://doi.org/10.1016/s0167-6911(97)00098-4
    17 https://doi.org/10.1080/002071798222280
    18 https://doi.org/10.1109/72.165588
    19 https://doi.org/10.1109/72.363477
    20 https://doi.org/10.1109/72.870049
    21 https://doi.org/10.1109/9.100933
    22 https://doi.org/10.1109/9.847117
    23 https://doi.org/10.1109/91.824777
    24 https://doi.org/10.1109/tac.2002.802754
    25 https://doi.org/10.1109/tac.2003.819287
    26 https://doi.org/10.1109/tac.2005.854652
    27 https://doi.org/10.1109/tnn.2002.804306
    28 https://doi.org/10.1109/tnn.2004.826130
    29 https://doi.org/10.1109/tnn.2005.844907
    30 https://doi.org/10.1109/tsmca.2004.824870
    31 https://doi.org/10.1109/tsmcb.2003.817055
    32 https://doi.org/10.1109/tsmcb.2005.846645
    33 https://doi.org/10.1109/tsmcb.2008.918568
    34 https://doi.org/10.1137/s0363012992232555
    35 schema:datePublished 2010-04
    36 schema:datePublishedReg 2010-04-01
    37 schema:description This paper is concerned with the problem of adaptive neural control for uncertain nonlinear strict-feedback time-delay systems with unknown virtual control coefficients. Radial basis function (RBF) neural networks are employed to directly approximate unknown virtual control signals, and then the adaptive neural control law is constructed by Lyapunov-Krasovskii functionals and backstepping. In order to avoid encountering a large number of adaptive parameters when using RBF neural networks as function approximators, an unknown constant, instead of unknown neural weights themselves, is employed as the estimated parameter. This technique makes only one adaptive parameter tuned online, thus significantly alleviating the burdensome computation. Meanwhile, some continuous functions are introduced to overcome the design difficulty originating from the use of one adaptive parameter. The proposed adaptive control guarantees the boundedness of all the signals in the closed-loop system. Simulation studies are presented to illustrate the effectiveness of the scheme.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N91716aa113274bab85b2f260c547cfa2
    42 Nb5ea839917b94b30be166696e0e3cc9b
    43 sg:journal.1135989
    44 schema:name Direct adaptive neural control for stabilization of nonlinear time-delay systems
    45 schema:pagination 800-812
    46 schema:productId N503e188f04954f84aac2dc247ab0c03a
    47 N54c463efb16c44feb3cde7699fc292de
    48 Nbd55c3cd98ac4333bf8855452b495dce
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030569090
    50 https://doi.org/10.1007/s11432-010-0075-z
    51 schema:sdDatePublished 2019-04-11T10:15
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Nc9b51ed5181d43098d63427833aa04dd
    54 schema:url http://link.springer.com/10.1007%2Fs11432-010-0075-z
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N128edd660ab8487a9097d50c68be8b5a rdf:first sg:person.013555723105.27
    59 rdf:rest rdf:nil
    60 N4a7c7d24b4824fecacbf56f3a2808d76 rdf:first sg:person.01104613771.12
    61 rdf:rest Nfa438e84408445868869934137594782
    62 N503e188f04954f84aac2dc247ab0c03a schema:name readcube_id
    63 schema:value 91a0ca7f85cff407de8cfff3b0a4e46c6c6d9ccd0c72cd1df881cc7780cb1d40
    64 rdf:type schema:PropertyValue
    65 N54c463efb16c44feb3cde7699fc292de schema:name doi
    66 schema:value 10.1007/s11432-010-0075-z
    67 rdf:type schema:PropertyValue
    68 N8b45aaa4a3ee443a839514b7b8c457f4 rdf:first sg:person.0603773723.52
    69 rdf:rest N128edd660ab8487a9097d50c68be8b5a
    70 N91716aa113274bab85b2f260c547cfa2 schema:issueNumber 4
    71 rdf:type schema:PublicationIssue
    72 Nb5ea839917b94b30be166696e0e3cc9b schema:volumeNumber 53
    73 rdf:type schema:PublicationVolume
    74 Nbd55c3cd98ac4333bf8855452b495dce schema:name dimensions_id
    75 schema:value pub.1030569090
    76 rdf:type schema:PropertyValue
    77 Nc9b51ed5181d43098d63427833aa04dd schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 Nfa438e84408445868869934137594782 rdf:first sg:person.010422505671.53
    80 rdf:rest N8b45aaa4a3ee443a839514b7b8c457f4
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Artificial Intelligence and Image Processing
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1135989 schema:issn 1009-2757
    88 1674-733X
    89 schema:name Science China Information Sciences
    90 rdf:type schema:Periodical
    91 sg:person.010422505671.53 schema:affiliation https://www.grid.ac/institutes/grid.410645.2
    92 schema:familyName Zhang
    93 schema:givenName SiYing
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422505671.53
    95 rdf:type schema:Person
    96 sg:person.01104613771.12 schema:affiliation https://www.grid.ac/institutes/grid.410645.2
    97 schema:familyName Wang
    98 schema:givenName Min
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104613771.12
    100 rdf:type schema:Person
    101 sg:person.013555723105.27 schema:affiliation https://www.grid.ac/institutes/grid.410645.2
    102 schema:familyName Luo
    103 schema:givenName Fei
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013555723105.27
    105 rdf:type schema:Person
    106 sg:person.0603773723.52 schema:affiliation https://www.grid.ac/institutes/grid.410645.2
    107 schema:familyName Chen
    108 schema:givenName Bing
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603773723.52
    110 rdf:type schema:Person
    111 sg:pub.10.1007/s11432-006-0189-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014202974
    112 https://doi.org/10.1007/s11432-006-0189-5
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.automatica.2006.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011517254
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.automatica.2006.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042813700
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.automatica.2006.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283878
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.automatica.2007.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008887650
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.automatica.2007.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043169028
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.fss.2007.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036596159
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.fss.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028905388
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.fss.2007.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045405320
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.nonrwa.2007.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001527490
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/s0005-1098(00)00116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026654269
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/s0005-1098(01)00254-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011809742
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/s0167-6911(97)00098-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024451882
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1080/002071798222280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053596357
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/72.165588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218290
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/72.363477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218564
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/72.870049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219477
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/9.100933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061242742
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/9.847117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061246296
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/91.824777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247986
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/tac.2002.802754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475080
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/tac.2003.819287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475469
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/tac.2005.854652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061476009
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/tnn.2002.804306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716497
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/tnn.2004.826130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716712
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/tnn.2005.844907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716846
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/tsmca.2004.824870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794980
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tsmcb.2003.817055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796225
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tsmcb.2005.846645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796457
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tsmcb.2008.918568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796948
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1137/s0363012992232555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880910
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.410645.2 schema:alternateName Qingdao University
    175 schema:name College of Automation, South China University of Technology, 510641, Guangzhou, China
    176 Institute of Complexity Science, Qingdao University, 266071, Qingdao, China
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...