Production of thick-walled hollow glass microspheres for inertial confinement fusion targets by sol-gel technology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

Cong Gao, XiaoBo Qi, Sheng Wei, ZhanWen Zhang, Bo Li, Tao Shi, QiaoMei Chu

ABSTRACT

To fabricate thick-walled hollow glass microspheres (HGMs) for inertial confinement fusion (ICF) targets by sol-gel technology, we investigated the effects of glass composition, blowing agent, refining temperature, pressure and composition of furnace atmosphere on the wall thickness of HGMs by numerical simulation and experiments. The results showed that the residence times of the thick-walled HGMs in the encapsulating and refining phases decreased with the increase of wall thickness of HGMs. As a response to this challenge, glass composition must be optimized with the object of high surface tension and low viscosity at refining temperature, and the blowing agents with high decomposition temperature should be used, furthermore the concentration of blowing agents in gel particles must also be precisely controlled. The higher volume fraction of argon gas in the furnace atmosphere, the thicker the wall of HGMs. Due to the limited operating range of furnace atmosphere pressure, changing furnace atmosphere pressure could not significantly increase the wall thickness of HGMs. Although increasing refining temperature can improve the yield of high quality HGMs, a higher furnace atmosphere temperature may lead to a decrease in the wall thickness of HGMs. When the volume fraction of argon gas in the furnace atmosphere ranged from 80% to 95%, the furnace atmosphere pressure ranged from 1.0×105 Pa to 1.25×105 Pa, and the refining temperature ranged from 1600°C to 1800°C, we produced thick-walled (5–10 μm) HGMs with good sphericity, wall thickness uniformity and surface finish. However, the yield of high quality HGMs needs to be further improved. The compressive strength, tensile strength and permeation coefficient to deuterium gas of thick-walled HGMs at ambient temperature decreased with increase of the wall thickness. More... »

PAGES

2377-2385

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11431-011-4457-2

DOI

http://dx.doi.org/10.1007/s11431-011-4457-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038985683


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sichuan University", 
          "id": "https://www.grid.ac/institutes/grid.13291.38", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China", 
            "School of Chemical Engineering, Sichuan University, 610065, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Cong", 
        "id": "sg:person.012534345157.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534345157.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "XiaoBo", 
        "id": "sg:person.07614556357.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07614556357.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Sheng", 
        "id": "sg:person.013130270030.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013130270030.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "ZhanWen", 
        "id": "sg:person.014740223657.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740223657.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Bo", 
        "id": "sg:person.010526365357.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526365357.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Academy of Engineering Physics", 
          "id": "https://www.grid.ac/institutes/grid.249079.1", 
          "name": [
            "Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "QiaoMei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3788/hplpb20102207.1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071402125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst00-a36113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091167352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst07-a1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst07-a1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst99-a11963925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103673690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1360/02ys9038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106638104", 
          "https://doi.org/10.1360/02ys9038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "To fabricate thick-walled hollow glass microspheres (HGMs) for inertial confinement fusion (ICF) targets by sol-gel technology, we investigated the effects of glass composition, blowing agent, refining temperature, pressure and composition of furnace atmosphere on the wall thickness of HGMs by numerical simulation and experiments. The results showed that the residence times of the thick-walled HGMs in the encapsulating and refining phases decreased with the increase of wall thickness of HGMs. As a response to this challenge, glass composition must be optimized with the object of high surface tension and low viscosity at refining temperature, and the blowing agents with high decomposition temperature should be used, furthermore the concentration of blowing agents in gel particles must also be precisely controlled. The higher volume fraction of argon gas in the furnace atmosphere, the thicker the wall of HGMs. Due to the limited operating range of furnace atmosphere pressure, changing furnace atmosphere pressure could not significantly increase the wall thickness of HGMs. Although increasing refining temperature can improve the yield of high quality HGMs, a higher furnace atmosphere temperature may lead to a decrease in the wall thickness of HGMs. When the volume fraction of argon gas in the furnace atmosphere ranged from 80% to 95%, the furnace atmosphere pressure ranged from 1.0\u00d7105 Pa to 1.25\u00d7105 Pa, and the refining temperature ranged from 1600\u00b0C to 1800\u00b0C, we produced thick-walled (5\u201310 \u03bcm) HGMs with good sphericity, wall thickness uniformity and surface finish. However, the yield of high quality HGMs needs to be further improved. The compressive strength, tensile strength and permeation coefficient to deuterium gas of thick-walled HGMs at ambient temperature decreased with increase of the wall thickness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11431-011-4457-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134340", 
        "issn": [
          "1674-7321", 
          "1869-1900"
        ], 
        "name": "Science China Technological Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Production of thick-walled hollow glass microspheres for inertial confinement fusion targets by sol-gel technology", 
    "pagination": "2377-2385", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9b4e65e6758525d5867a45c75e23bd928d3cc314dc5b5864b1128a2100df19a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11431-011-4457-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038985683"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11431-011-4457-2", 
      "https://app.dimensions.ai/details/publication/pub.1038985683"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11431-011-4457-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11431-011-4457-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11431-011-4457-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11431-011-4457-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11431-011-4457-2'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11431-011-4457-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nad5dfa36da154bb18e297597fdd61edd
4 schema:citation sg:pub.10.1360/02ys9038
5 https://doi.org/10.13182/fst00-a36113
6 https://doi.org/10.13182/fst07-a1452
7 https://doi.org/10.13182/fst07-a1453
8 https://doi.org/10.13182/fst99-a11963925
9 https://doi.org/10.3788/hplpb20102207.1543
10 schema:datePublished 2011-09
11 schema:datePublishedReg 2011-09-01
12 schema:description To fabricate thick-walled hollow glass microspheres (HGMs) for inertial confinement fusion (ICF) targets by sol-gel technology, we investigated the effects of glass composition, blowing agent, refining temperature, pressure and composition of furnace atmosphere on the wall thickness of HGMs by numerical simulation and experiments. The results showed that the residence times of the thick-walled HGMs in the encapsulating and refining phases decreased with the increase of wall thickness of HGMs. As a response to this challenge, glass composition must be optimized with the object of high surface tension and low viscosity at refining temperature, and the blowing agents with high decomposition temperature should be used, furthermore the concentration of blowing agents in gel particles must also be precisely controlled. The higher volume fraction of argon gas in the furnace atmosphere, the thicker the wall of HGMs. Due to the limited operating range of furnace atmosphere pressure, changing furnace atmosphere pressure could not significantly increase the wall thickness of HGMs. Although increasing refining temperature can improve the yield of high quality HGMs, a higher furnace atmosphere temperature may lead to a decrease in the wall thickness of HGMs. When the volume fraction of argon gas in the furnace atmosphere ranged from 80% to 95%, the furnace atmosphere pressure ranged from 1.0×105 Pa to 1.25×105 Pa, and the refining temperature ranged from 1600°C to 1800°C, we produced thick-walled (5–10 μm) HGMs with good sphericity, wall thickness uniformity and surface finish. However, the yield of high quality HGMs needs to be further improved. The compressive strength, tensile strength and permeation coefficient to deuterium gas of thick-walled HGMs at ambient temperature decreased with increase of the wall thickness.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N59ca44af31ad46f5b53abf5fccb45244
17 N605cdf9375094f5394cbd63524207da0
18 sg:journal.1134340
19 schema:name Production of thick-walled hollow glass microspheres for inertial confinement fusion targets by sol-gel technology
20 schema:pagination 2377-2385
21 schema:productId N1ab67d9b722f4e8b98fc4b47dd6d36be
22 N3745414b5bda40f7a30f47ddb2af5211
23 Na992fcc9dada40c48c88deccaef8a758
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038985683
25 https://doi.org/10.1007/s11431-011-4457-2
26 schema:sdDatePublished 2019-04-10T18:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nc446c0598f2a430b8a3193583ec053b2
29 schema:url http://link.springer.com/10.1007%2Fs11431-011-4457-2
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N06ac658312a84f458f6a83e8b2e66aa6 rdf:first sg:person.07614556357.68
34 rdf:rest N0e17eb0ced2f43ae8be26de4128c4670
35 N0e17eb0ced2f43ae8be26de4128c4670 rdf:first sg:person.013130270030.63
36 rdf:rest Nf665950787d044048ba1e89af768e211
37 N1ab67d9b722f4e8b98fc4b47dd6d36be schema:name readcube_id
38 schema:value b9b4e65e6758525d5867a45c75e23bd928d3cc314dc5b5864b1128a2100df19a
39 rdf:type schema:PropertyValue
40 N3745414b5bda40f7a30f47ddb2af5211 schema:name doi
41 schema:value 10.1007/s11431-011-4457-2
42 rdf:type schema:PropertyValue
43 N4aac1640d1424171a29438407e664cc3 rdf:first sg:person.010526365357.50
44 rdf:rest N57c134bbd6c3448db96a0643dd10ec45
45 N57c134bbd6c3448db96a0643dd10ec45 rdf:first Nbcd1413187bf4459b9e9e55390e44272
46 rdf:rest N71f177fd18de4a009bafd247cf27963f
47 N59ca44af31ad46f5b53abf5fccb45244 schema:issueNumber 9
48 rdf:type schema:PublicationIssue
49 N605cdf9375094f5394cbd63524207da0 schema:volumeNumber 54
50 rdf:type schema:PublicationVolume
51 N71f177fd18de4a009bafd247cf27963f rdf:first Nab5348663d264c289a5da4eda11dae99
52 rdf:rest rdf:nil
53 Na992fcc9dada40c48c88deccaef8a758 schema:name dimensions_id
54 schema:value pub.1038985683
55 rdf:type schema:PropertyValue
56 Nab5348663d264c289a5da4eda11dae99 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
57 schema:familyName Chu
58 schema:givenName QiaoMei
59 rdf:type schema:Person
60 Nad5dfa36da154bb18e297597fdd61edd rdf:first sg:person.012534345157.54
61 rdf:rest N06ac658312a84f458f6a83e8b2e66aa6
62 Nbcd1413187bf4459b9e9e55390e44272 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
63 schema:familyName Shi
64 schema:givenName Tao
65 rdf:type schema:Person
66 Nc446c0598f2a430b8a3193583ec053b2 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nf665950787d044048ba1e89af768e211 rdf:first sg:person.014740223657.37
69 rdf:rest N4aac1640d1424171a29438407e664cc3
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
74 schema:name Materials Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1134340 schema:issn 1674-7321
77 1869-1900
78 schema:name Science China Technological Sciences
79 rdf:type schema:Periodical
80 sg:person.010526365357.50 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
81 schema:familyName Li
82 schema:givenName Bo
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526365357.50
84 rdf:type schema:Person
85 sg:person.012534345157.54 schema:affiliation https://www.grid.ac/institutes/grid.13291.38
86 schema:familyName Gao
87 schema:givenName Cong
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534345157.54
89 rdf:type schema:Person
90 sg:person.013130270030.63 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
91 schema:familyName Wei
92 schema:givenName Sheng
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013130270030.63
94 rdf:type schema:Person
95 sg:person.014740223657.37 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
96 schema:familyName Zhang
97 schema:givenName ZhanWen
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740223657.37
99 rdf:type schema:Person
100 sg:person.07614556357.68 schema:affiliation https://www.grid.ac/institutes/grid.249079.1
101 schema:familyName Qi
102 schema:givenName XiaoBo
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07614556357.68
104 rdf:type schema:Person
105 sg:pub.10.1360/02ys9038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106638104
106 https://doi.org/10.1360/02ys9038
107 rdf:type schema:CreativeWork
108 https://doi.org/10.13182/fst00-a36113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091167352
109 rdf:type schema:CreativeWork
110 https://doi.org/10.13182/fst07-a1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168822
111 rdf:type schema:CreativeWork
112 https://doi.org/10.13182/fst07-a1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168823
113 rdf:type schema:CreativeWork
114 https://doi.org/10.13182/fst99-a11963925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103673690
115 rdf:type schema:CreativeWork
116 https://doi.org/10.3788/hplpb20102207.1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071402125
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.13291.38 schema:alternateName Sichuan University
119 schema:name Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China
120 School of Chemical Engineering, Sichuan University, 610065, Chengdu, China
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.249079.1 schema:alternateName China Academy of Engineering Physics
123 schema:name Research Center of Laser Fusion, China Academy of Engineering Physics, 621900, Mianyang, China
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...