Development of vibration style ladle slag detection methods and the key technologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

DaPeng Tan, ShiMing Ji, PeiYu Li, XiaoHong Pan

ABSTRACT

Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given. More... »

PAGES

2378-2387

References to SciGraph publications

  • 2009-01. Application of Improved HMM Algorithm in Slag Detection System in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 1962-12. Bath-Tub Vortex in NATURE
  • 1973. Stresses in Shells in NONE
  • 1965-09. The Bath-Tub Vortex in the Southern Hemisphere in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6

    DOI

    http://dx.doi.org/10.1007/s11431-010-4073-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027615861


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China", 
                "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "DaPeng", 
            "id": "sg:person.012130642732.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "ShiMing", 
            "id": "sg:person.01046153163.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "PeiYu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pan", 
            "givenName": "XiaoHong", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/srin.199400919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002750948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.381579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002847795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.204865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011631038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2355/isijinternational.29.605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011848888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsvi.1998.1858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011951020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(81)90340-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(81)90340-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88291-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013541661", 
              "https://doi.org/10.1007/978-3-642-88291-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88291-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013541661", 
              "https://doi.org/10.1007/978-3-642-88291-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(83)90470-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013623162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(83)90470-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013623162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(82)90293-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016448370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(82)90293-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016448370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1600-0692.2004.00665.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017372713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsvi.1993.1326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022087063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2355/isijinternational.46.257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027447379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.381544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029177847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1961080b0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033151391", 
              "https://doi.org/10.1038/1961080b0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.721225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034941645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wasman.2006.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038448446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(09)60001-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039298208", 
              "https://doi.org/10.1016/s1006-706x(09)60001-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mineng.2006.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041909481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.951997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047937495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/srin.200100153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052320778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2071084a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053036272", 
              "https://doi.org/10.1038/2071084a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2071084a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053036272", 
              "https://doi.org/10.1038/2071084a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112085001860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054014044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112062001330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054049357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112062001330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054049357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.54.3681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060719860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.54.3681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060719860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.104502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.104502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3901/jme.2007.02.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071549969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/kem.353-358.3067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072073665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077187284", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/imtc.1993.382631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086341778"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-09", 
        "datePublishedReg": "2010-09-01", 
        "description": "Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11431-010-4073-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134340", 
            "issn": [
              "1674-7321", 
              "1869-1900"
            ], 
            "name": "Science China Technological Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "name": "Development of vibration style ladle slag detection methods and the key technologies", 
        "pagination": "2378-2387", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "838e483425ee0c41d990816f7be43567ae98fadf2ca2b75e366ec15e7655d4b5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11431-010-4073-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027615861"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11431-010-4073-6", 
          "https://app.dimensions.ai/details/publication/pub.1027615861"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77586_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11431-010-4073-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11431-010-4073-6 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author Nb6a77220ed5044fd8c53cb6af3a52927
    4 schema:citation sg:pub.10.1007/978-3-642-88291-3
    5 sg:pub.10.1016/s1006-706x(09)60001-7
    6 sg:pub.10.1038/1961080b0
    7 sg:pub.10.1038/2071084a0
    8 https://app.dimensions.ai/details/publication/pub.1077187284
    9 https://doi.org/10.1002/srin.199400919
    10 https://doi.org/10.1002/srin.200100153
    11 https://doi.org/10.1006/jsvi.1993.1326
    12 https://doi.org/10.1006/jsvi.1998.1858
    13 https://doi.org/10.1016/0022-460x(81)90340-0
    14 https://doi.org/10.1016/0022-460x(82)90293-0
    15 https://doi.org/10.1016/0022-460x(83)90470-4
    16 https://doi.org/10.1016/j.mineng.2006.04.007
    17 https://doi.org/10.1016/j.wasman.2006.08.002
    18 https://doi.org/10.1017/s0022112062001330
    19 https://doi.org/10.1017/s0022112085001860
    20 https://doi.org/10.1103/physreve.54.3681
    21 https://doi.org/10.1103/physrevlett.91.104502
    22 https://doi.org/10.1109/imtc.1993.382631
    23 https://doi.org/10.1111/j.1600-0692.2004.00665.x
    24 https://doi.org/10.1117/12.204865
    25 https://doi.org/10.1117/12.381544
    26 https://doi.org/10.1117/12.381579
    27 https://doi.org/10.1117/12.721225
    28 https://doi.org/10.1117/12.951997
    29 https://doi.org/10.2355/isijinternational.29.605
    30 https://doi.org/10.2355/isijinternational.46.257
    31 https://doi.org/10.3901/jme.2007.02.141
    32 https://doi.org/10.4028/www.scientific.net/kem.353-358.3067
    33 schema:datePublished 2010-09
    34 schema:datePublishedReg 2010-09-01
    35 schema:description Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N5d955872d9c241aa90dcf17f032cf046
    40 Nf646afe05f1645b2a4145227b384f7d5
    41 sg:journal.1134340
    42 schema:name Development of vibration style ladle slag detection methods and the key technologies
    43 schema:pagination 2378-2387
    44 schema:productId N3807c21a712441149d141f5c002ccab5
    45 N4d85b4c02b804c19ac246b3eb7833e1e
    46 Nf003fb3f4b7944ed94deb8169ff437c2
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027615861
    48 https://doi.org/10.1007/s11431-010-4073-6
    49 schema:sdDatePublished 2019-04-11T10:50
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N5e039d54e7594e96a3656f143fcc7974
    52 schema:url http://link.springer.com/10.1007%2Fs11431-010-4073-6
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N3464e42782884ddaa948c5e0bf9c519e schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    57 schema:familyName Pan
    58 schema:givenName XiaoHong
    59 rdf:type schema:Person
    60 N3807c21a712441149d141f5c002ccab5 schema:name dimensions_id
    61 schema:value pub.1027615861
    62 rdf:type schema:PropertyValue
    63 N4d85b4c02b804c19ac246b3eb7833e1e schema:name readcube_id
    64 schema:value 838e483425ee0c41d990816f7be43567ae98fadf2ca2b75e366ec15e7655d4b5
    65 rdf:type schema:PropertyValue
    66 N5b3597c88d534901b05b45d0dada20a5 rdf:first Nee30dd1a30f54eb7bb3a937e7f0363c9
    67 rdf:rest Na5c909a9aac844a4b296815cc76452e8
    68 N5d955872d9c241aa90dcf17f032cf046 schema:issueNumber 9
    69 rdf:type schema:PublicationIssue
    70 N5e039d54e7594e96a3656f143fcc7974 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N882e979e33e64947b54493f8d11584df rdf:first sg:person.01046153163.59
    73 rdf:rest N5b3597c88d534901b05b45d0dada20a5
    74 Na5c909a9aac844a4b296815cc76452e8 rdf:first N3464e42782884ddaa948c5e0bf9c519e
    75 rdf:rest rdf:nil
    76 Nb6a77220ed5044fd8c53cb6af3a52927 rdf:first sg:person.012130642732.30
    77 rdf:rest N882e979e33e64947b54493f8d11584df
    78 Nee30dd1a30f54eb7bb3a937e7f0363c9 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    79 schema:familyName Li
    80 schema:givenName PeiYu
    81 rdf:type schema:Person
    82 Nf003fb3f4b7944ed94deb8169ff437c2 schema:name doi
    83 schema:value 10.1007/s11431-010-4073-6
    84 rdf:type schema:PropertyValue
    85 Nf646afe05f1645b2a4145227b384f7d5 schema:volumeNumber 53
    86 rdf:type schema:PublicationVolume
    87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Engineering
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Electrical and Electronic Engineering
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1134340 schema:issn 1674-7321
    94 1869-1900
    95 schema:name Science China Technological Sciences
    96 rdf:type schema:Periodical
    97 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    98 schema:familyName Ji
    99 schema:givenName ShiMing
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
    101 rdf:type schema:Person
    102 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    103 schema:familyName Tan
    104 schema:givenName DaPeng
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
    106 rdf:type schema:Person
    107 sg:pub.10.1007/978-3-642-88291-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013541661
    108 https://doi.org/10.1007/978-3-642-88291-3
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1016/s1006-706x(09)60001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298208
    111 https://doi.org/10.1016/s1006-706x(09)60001-7
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1038/1961080b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033151391
    114 https://doi.org/10.1038/1961080b0
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1038/2071084a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053036272
    117 https://doi.org/10.1038/2071084a0
    118 rdf:type schema:CreativeWork
    119 https://app.dimensions.ai/details/publication/pub.1077187284 schema:CreativeWork
    120 https://doi.org/10.1002/srin.199400919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002750948
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1002/srin.200100153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052320778
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1006/jsvi.1993.1326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087063
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1006/jsvi.1998.1858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011951020
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0022-460x(81)90340-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012253975
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0022-460x(82)90293-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016448370
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0022-460x(83)90470-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013623162
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.mineng.2006.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041909481
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.wasman.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038448446
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1017/s0022112062001330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054049357
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1017/s0022112085001860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054014044
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physreve.54.3681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719860
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.91.104502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827188
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/imtc.1993.382631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086341778
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1111/j.1600-0692.2004.00665.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017372713
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1117/12.204865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011631038
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1117/12.381544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029177847
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1117/12.381579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002847795
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1117/12.721225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034941645
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1117/12.951997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047937495
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.2355/isijinternational.29.605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011848888
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.2355/isijinternational.46.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447379
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.3901/jme.2007.02.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071549969
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.4028/www.scientific.net/kem.353-358.3067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072073665
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    169 schema:name Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
    170 Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China
    171 rdf:type schema:Organization
    172 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
    173 schema:name Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...