Development of vibration style ladle slag detection methods and the key technologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

DaPeng Tan, ShiMing Ji, PeiYu Li, XiaoHong Pan

ABSTRACT

Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given. More... »

PAGES

2378-2387

References to SciGraph publications

  • 2009-01. Application of Improved HMM Algorithm in Slag Detection System in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 1962-12. Bath-Tub Vortex in NATURE
  • 1973. Stresses in Shells in NONE
  • 1965-09. The Bath-Tub Vortex in the Southern Hemisphere in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6

    DOI

    http://dx.doi.org/10.1007/s11431-010-4073-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027615861


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China", 
                "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "DaPeng", 
            "id": "sg:person.012130642732.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "ShiMing", 
            "id": "sg:person.01046153163.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "PeiYu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pan", 
            "givenName": "XiaoHong", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/srin.199400919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002750948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.381579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002847795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.204865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011631038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2355/isijinternational.29.605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011848888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsvi.1998.1858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011951020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(81)90340-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(81)90340-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88291-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013541661", 
              "https://doi.org/10.1007/978-3-642-88291-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88291-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013541661", 
              "https://doi.org/10.1007/978-3-642-88291-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(83)90470-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013623162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(83)90470-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013623162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(82)90293-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016448370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-460x(82)90293-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016448370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1600-0692.2004.00665.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017372713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsvi.1993.1326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022087063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2355/isijinternational.46.257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027447379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.381544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029177847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1961080b0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033151391", 
              "https://doi.org/10.1038/1961080b0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.721225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034941645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wasman.2006.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038448446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(09)60001-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039298208", 
              "https://doi.org/10.1016/s1006-706x(09)60001-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mineng.2006.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041909481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.951997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047937495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/srin.200100153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052320778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2071084a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053036272", 
              "https://doi.org/10.1038/2071084a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2071084a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053036272", 
              "https://doi.org/10.1038/2071084a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112085001860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054014044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112062001330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054049357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112062001330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054049357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.54.3681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060719860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.54.3681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060719860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.104502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.104502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3901/jme.2007.02.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071549969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/kem.353-358.3067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072073665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077187284", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/imtc.1993.382631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086341778"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-09", 
        "datePublishedReg": "2010-09-01", 
        "description": "Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11431-010-4073-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134340", 
            "issn": [
              "1674-7321", 
              "1869-1900"
            ], 
            "name": "Science China Technological Sciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "name": "Development of vibration style ladle slag detection methods and the key technologies", 
        "pagination": "2378-2387", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "838e483425ee0c41d990816f7be43567ae98fadf2ca2b75e366ec15e7655d4b5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11431-010-4073-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027615861"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11431-010-4073-6", 
          "https://app.dimensions.ai/details/publication/pub.1027615861"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77586_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11431-010-4073-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11431-010-4073-6 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author Nb30df381accd45f784baee6b609270fc
    4 schema:citation sg:pub.10.1007/978-3-642-88291-3
    5 sg:pub.10.1016/s1006-706x(09)60001-7
    6 sg:pub.10.1038/1961080b0
    7 sg:pub.10.1038/2071084a0
    8 https://app.dimensions.ai/details/publication/pub.1077187284
    9 https://doi.org/10.1002/srin.199400919
    10 https://doi.org/10.1002/srin.200100153
    11 https://doi.org/10.1006/jsvi.1993.1326
    12 https://doi.org/10.1006/jsvi.1998.1858
    13 https://doi.org/10.1016/0022-460x(81)90340-0
    14 https://doi.org/10.1016/0022-460x(82)90293-0
    15 https://doi.org/10.1016/0022-460x(83)90470-4
    16 https://doi.org/10.1016/j.mineng.2006.04.007
    17 https://doi.org/10.1016/j.wasman.2006.08.002
    18 https://doi.org/10.1017/s0022112062001330
    19 https://doi.org/10.1017/s0022112085001860
    20 https://doi.org/10.1103/physreve.54.3681
    21 https://doi.org/10.1103/physrevlett.91.104502
    22 https://doi.org/10.1109/imtc.1993.382631
    23 https://doi.org/10.1111/j.1600-0692.2004.00665.x
    24 https://doi.org/10.1117/12.204865
    25 https://doi.org/10.1117/12.381544
    26 https://doi.org/10.1117/12.381579
    27 https://doi.org/10.1117/12.721225
    28 https://doi.org/10.1117/12.951997
    29 https://doi.org/10.2355/isijinternational.29.605
    30 https://doi.org/10.2355/isijinternational.46.257
    31 https://doi.org/10.3901/jme.2007.02.141
    32 https://doi.org/10.4028/www.scientific.net/kem.353-358.3067
    33 schema:datePublished 2010-09
    34 schema:datePublishedReg 2010-09-01
    35 schema:description Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N8cf5ee5910664c6b8bdd7471b71c445e
    40 Nbc4bcc1753d248fe914869cae09c75cc
    41 sg:journal.1134340
    42 schema:name Development of vibration style ladle slag detection methods and the key technologies
    43 schema:pagination 2378-2387
    44 schema:productId N10e1fc765d294d43bd60b5d46c12faca
    45 N6f3efd89b8b94199b481479165518950
    46 N7c5ce29bff8f455bba47c2f0e189f7b3
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027615861
    48 https://doi.org/10.1007/s11431-010-4073-6
    49 schema:sdDatePublished 2019-04-11T10:50
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Nbf68d5042a8146f2983179679d59f635
    52 schema:url http://link.springer.com/10.1007%2Fs11431-010-4073-6
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N10e1fc765d294d43bd60b5d46c12faca schema:name dimensions_id
    57 schema:value pub.1027615861
    58 rdf:type schema:PropertyValue
    59 N1b0bc1298a6346199c35786d043c5a45 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    60 schema:familyName Li
    61 schema:givenName PeiYu
    62 rdf:type schema:Person
    63 N6f3efd89b8b94199b481479165518950 schema:name readcube_id
    64 schema:value 838e483425ee0c41d990816f7be43567ae98fadf2ca2b75e366ec15e7655d4b5
    65 rdf:type schema:PropertyValue
    66 N7c5ce29bff8f455bba47c2f0e189f7b3 schema:name doi
    67 schema:value 10.1007/s11431-010-4073-6
    68 rdf:type schema:PropertyValue
    69 N866dc53f74d74592941720f877a4d956 rdf:first N9718e5bd4eec4ca295b4c53d6e896666
    70 rdf:rest rdf:nil
    71 N8cf5ee5910664c6b8bdd7471b71c445e schema:volumeNumber 53
    72 rdf:type schema:PublicationVolume
    73 N9485e38f689246c3a9e85320d11c9352 rdf:first sg:person.01046153163.59
    74 rdf:rest Nfe4b42418f6a43ef8cc8b3b0d219ed64
    75 N9718e5bd4eec4ca295b4c53d6e896666 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    76 schema:familyName Pan
    77 schema:givenName XiaoHong
    78 rdf:type schema:Person
    79 Nb30df381accd45f784baee6b609270fc rdf:first sg:person.012130642732.30
    80 rdf:rest N9485e38f689246c3a9e85320d11c9352
    81 Nbc4bcc1753d248fe914869cae09c75cc schema:issueNumber 9
    82 rdf:type schema:PublicationIssue
    83 Nbf68d5042a8146f2983179679d59f635 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 Nfe4b42418f6a43ef8cc8b3b0d219ed64 rdf:first N1b0bc1298a6346199c35786d043c5a45
    86 rdf:rest N866dc53f74d74592941720f877a4d956
    87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Engineering
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Electrical and Electronic Engineering
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1134340 schema:issn 1674-7321
    94 1869-1900
    95 schema:name Science China Technological Sciences
    96 rdf:type schema:Periodical
    97 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    98 schema:familyName Ji
    99 schema:givenName ShiMing
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
    101 rdf:type schema:Person
    102 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    103 schema:familyName Tan
    104 schema:givenName DaPeng
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
    106 rdf:type schema:Person
    107 sg:pub.10.1007/978-3-642-88291-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013541661
    108 https://doi.org/10.1007/978-3-642-88291-3
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1016/s1006-706x(09)60001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298208
    111 https://doi.org/10.1016/s1006-706x(09)60001-7
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1038/1961080b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033151391
    114 https://doi.org/10.1038/1961080b0
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1038/2071084a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053036272
    117 https://doi.org/10.1038/2071084a0
    118 rdf:type schema:CreativeWork
    119 https://app.dimensions.ai/details/publication/pub.1077187284 schema:CreativeWork
    120 https://doi.org/10.1002/srin.199400919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002750948
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1002/srin.200100153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052320778
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1006/jsvi.1993.1326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087063
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1006/jsvi.1998.1858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011951020
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0022-460x(81)90340-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012253975
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0022-460x(82)90293-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016448370
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0022-460x(83)90470-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013623162
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.mineng.2006.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041909481
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.wasman.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038448446
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1017/s0022112062001330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054049357
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1017/s0022112085001860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054014044
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physreve.54.3681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719860
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.91.104502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827188
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/imtc.1993.382631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086341778
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1111/j.1600-0692.2004.00665.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017372713
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1117/12.204865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011631038
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1117/12.381544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029177847
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1117/12.381579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002847795
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1117/12.721225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034941645
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1117/12.951997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047937495
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.2355/isijinternational.29.605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011848888
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.2355/isijinternational.46.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447379
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.3901/jme.2007.02.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071549969
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.4028/www.scientific.net/kem.353-358.3067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072073665
    167 rdf:type schema:CreativeWork
    168 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    169 schema:name Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
    170 Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China
    171 rdf:type schema:Organization
    172 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
    173 schema:name Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...