Development of vibration style ladle slag detection methods and the key technologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

DaPeng Tan, ShiMing Ji, PeiYu Li, XiaoHong Pan

ABSTRACT

Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given. More... »

PAGES

2378-2387

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6

DOI

http://dx.doi.org/10.1007/s11431-010-4073-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027615861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China", 
            "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "DaPeng", 
        "id": "sg:person.012130642732.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "ShiMing", 
        "id": "sg:person.01046153163.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "PeiYu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "XiaoHong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/srin.199400919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002750948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.381579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002847795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.204865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011631038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.29.605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011848888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.1998.1858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011951020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(81)90340-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012253975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(81)90340-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012253975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88291-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013541661", 
          "https://doi.org/10.1007/978-3-642-88291-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88291-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013541661", 
          "https://doi.org/10.1007/978-3-642-88291-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(83)90470-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013623162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(83)90470-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013623162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(82)90293-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016448370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-460x(82)90293-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016448370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0692.2004.00665.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017372713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.1993.1326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022087063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.46.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027447379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.381544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029177847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1961080b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033151391", 
          "https://doi.org/10.1038/1961080b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.721225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034941645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wasman.2006.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038448446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(09)60001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039298208", 
          "https://doi.org/10.1016/s1006-706x(09)60001-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mineng.2006.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041909481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.951997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047937495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/srin.200100153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052320778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2071084a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053036272", 
          "https://doi.org/10.1038/2071084a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2071084a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053036272", 
          "https://doi.org/10.1038/2071084a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112085001860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054014044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112062001330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054049357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112062001330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054049357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.3681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.3681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.104502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.104502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2007.02.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071549969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.353-358.3067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072073665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077187284", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/imtc.1993.382631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086341778"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11431-010-4073-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134340", 
        "issn": [
          "1674-7321", 
          "1869-1900"
        ], 
        "name": "Science China Technological Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Development of vibration style ladle slag detection methods and the key technologies", 
    "pagination": "2378-2387", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "838e483425ee0c41d990816f7be43567ae98fadf2ca2b75e366ec15e7655d4b5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11431-010-4073-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027615861"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11431-010-4073-6", 
      "https://app.dimensions.ai/details/publication/pub.1027615861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77586_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11431-010-4073-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11431-010-4073-6'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11431-010-4073-6 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N68b14b8fb70f41ddad975a366120714d
4 schema:citation sg:pub.10.1007/978-3-642-88291-3
5 sg:pub.10.1016/s1006-706x(09)60001-7
6 sg:pub.10.1038/1961080b0
7 sg:pub.10.1038/2071084a0
8 https://app.dimensions.ai/details/publication/pub.1077187284
9 https://doi.org/10.1002/srin.199400919
10 https://doi.org/10.1002/srin.200100153
11 https://doi.org/10.1006/jsvi.1993.1326
12 https://doi.org/10.1006/jsvi.1998.1858
13 https://doi.org/10.1016/0022-460x(81)90340-0
14 https://doi.org/10.1016/0022-460x(82)90293-0
15 https://doi.org/10.1016/0022-460x(83)90470-4
16 https://doi.org/10.1016/j.mineng.2006.04.007
17 https://doi.org/10.1016/j.wasman.2006.08.002
18 https://doi.org/10.1017/s0022112062001330
19 https://doi.org/10.1017/s0022112085001860
20 https://doi.org/10.1103/physreve.54.3681
21 https://doi.org/10.1103/physrevlett.91.104502
22 https://doi.org/10.1109/imtc.1993.382631
23 https://doi.org/10.1111/j.1600-0692.2004.00665.x
24 https://doi.org/10.1117/12.204865
25 https://doi.org/10.1117/12.381544
26 https://doi.org/10.1117/12.381579
27 https://doi.org/10.1117/12.721225
28 https://doi.org/10.1117/12.951997
29 https://doi.org/10.2355/isijinternational.29.605
30 https://doi.org/10.2355/isijinternational.46.257
31 https://doi.org/10.3901/jme.2007.02.141
32 https://doi.org/10.4028/www.scientific.net/kem.353-358.3067
33 schema:datePublished 2010-09
34 schema:datePublishedReg 2010-09-01
35 schema:description Ladle slag carry-over detection technology (SCDT) is of important practical significance to steel continuous casting production (CCP), which can effectively improve the casting blank quality, increase molten steel yield ratio, and protract the service life of tundish. The current SCDT realization methods and their application circumstance were summarized, and their main problems during the course of factual production were pointed out. The difficult technical points of detection principle, digital signal processing for vibration style SCDT development were described. To aim at the problems of vibration style SCDT, such as low recognition stability and long applied adjustment time, its key technologies including water model experimental platform establishment, two-phase sink vortex entrapment mechanism, forced vibration response of shroud nozzle and steel stream shock vibration signal processing optimization were analyzed deeply, and the corresponding research route and advices were given.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N1440a43c68a64f6d9bec03aa7f37d1dd
40 Ne5b76f08d8e3468eb216092cb1bac605
41 sg:journal.1134340
42 schema:name Development of vibration style ladle slag detection methods and the key technologies
43 schema:pagination 2378-2387
44 schema:productId N6e8ef07c6181498bb9a2e179fb00b619
45 N79dbf938b7d843908a6ad58140dab703
46 Nf1f0e65db2af47cda638a152392b72bb
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027615861
48 https://doi.org/10.1007/s11431-010-4073-6
49 schema:sdDatePublished 2019-04-11T10:50
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N63f3697e2e984a43ac3ecd5e4a64c2d2
52 schema:url http://link.springer.com/10.1007%2Fs11431-010-4073-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1440a43c68a64f6d9bec03aa7f37d1dd schema:volumeNumber 53
57 rdf:type schema:PublicationVolume
58 N3f9d9bed7f8d4e29b9c7bed0d145b161 rdf:first N5b94b5fdf2714d5ea89cb7c42a873ea6
59 rdf:rest N94f82874ab644a97b756c7b6c4a41774
60 N4d6adb281c0e445c93a009a89d5833af schema:affiliation https://www.grid.ac/institutes/grid.13402.34
61 schema:familyName Pan
62 schema:givenName XiaoHong
63 rdf:type schema:Person
64 N5b94b5fdf2714d5ea89cb7c42a873ea6 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
65 schema:familyName Li
66 schema:givenName PeiYu
67 rdf:type schema:Person
68 N63f3697e2e984a43ac3ecd5e4a64c2d2 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N68b14b8fb70f41ddad975a366120714d rdf:first sg:person.012130642732.30
71 rdf:rest Nc65a30f0755443668ccc34699844113e
72 N6e8ef07c6181498bb9a2e179fb00b619 schema:name doi
73 schema:value 10.1007/s11431-010-4073-6
74 rdf:type schema:PropertyValue
75 N79dbf938b7d843908a6ad58140dab703 schema:name readcube_id
76 schema:value 838e483425ee0c41d990816f7be43567ae98fadf2ca2b75e366ec15e7655d4b5
77 rdf:type schema:PropertyValue
78 N94f82874ab644a97b756c7b6c4a41774 rdf:first N4d6adb281c0e445c93a009a89d5833af
79 rdf:rest rdf:nil
80 Nc65a30f0755443668ccc34699844113e rdf:first sg:person.01046153163.59
81 rdf:rest N3f9d9bed7f8d4e29b9c7bed0d145b161
82 Ne5b76f08d8e3468eb216092cb1bac605 schema:issueNumber 9
83 rdf:type schema:PublicationIssue
84 Nf1f0e65db2af47cda638a152392b72bb schema:name dimensions_id
85 schema:value pub.1027615861
86 rdf:type schema:PropertyValue
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
91 schema:name Electrical and Electronic Engineering
92 rdf:type schema:DefinedTerm
93 sg:journal.1134340 schema:issn 1674-7321
94 1869-1900
95 schema:name Science China Technological Sciences
96 rdf:type schema:Periodical
97 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
98 schema:familyName Ji
99 schema:givenName ShiMing
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
101 rdf:type schema:Person
102 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
103 schema:familyName Tan
104 schema:givenName DaPeng
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
106 rdf:type schema:Person
107 sg:pub.10.1007/978-3-642-88291-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013541661
108 https://doi.org/10.1007/978-3-642-88291-3
109 rdf:type schema:CreativeWork
110 sg:pub.10.1016/s1006-706x(09)60001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298208
111 https://doi.org/10.1016/s1006-706x(09)60001-7
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/1961080b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033151391
114 https://doi.org/10.1038/1961080b0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/2071084a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053036272
117 https://doi.org/10.1038/2071084a0
118 rdf:type schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1077187284 schema:CreativeWork
120 https://doi.org/10.1002/srin.199400919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002750948
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/srin.200100153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052320778
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1006/jsvi.1993.1326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087063
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1006/jsvi.1998.1858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011951020
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0022-460x(81)90340-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012253975
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0022-460x(82)90293-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016448370
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0022-460x(83)90470-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013623162
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.mineng.2006.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041909481
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.wasman.2006.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038448446
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1017/s0022112062001330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054049357
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1017/s0022112085001860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054014044
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physreve.54.3681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719860
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.91.104502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827188
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/imtc.1993.382631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086341778
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1111/j.1600-0692.2004.00665.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017372713
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1117/12.204865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011631038
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1117/12.381544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029177847
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1117/12.381579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002847795
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1117/12.721225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034941645
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1117/12.951997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047937495
159 rdf:type schema:CreativeWork
160 https://doi.org/10.2355/isijinternational.29.605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011848888
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2355/isijinternational.46.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447379
163 rdf:type schema:CreativeWork
164 https://doi.org/10.3901/jme.2007.02.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071549969
165 rdf:type schema:CreativeWork
166 https://doi.org/10.4028/www.scientific.net/kem.353-358.3067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072073665
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
169 schema:name Department of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
170 Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
173 schema:name Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education, Zhejiang University of Technology, 310014, Hangzhou, China
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...