Evaluating the uncertainty of Darcy velocity with sparse grid collocation method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

LiangSheng Shi, JinZhong Yang, DongXiao Zhang

ABSTRACT

Spatial variability of Darcy velocity is presented due to the heterogeneity of aquifer parameters. The uncertainty qualification of velocity suffers great challenge in the complex porous media. This work focuses on the use of sparse grid collocation method in velocity simulation. Since the sparse grid collocation method provides a non-intrusive way to incorporate any existing deterministic solver, the mixed finite element method is combined as the deterministic solver to retain the local continuity of Darcy velocity. We decompose the error of the velocity into three components, and illustrate that the Karhunen-Loeve truncation brings more error into velocity approximation than into head. The convergence properties of velocity moments restrict the application of sparse grid collocation method in the problems with small correlation lengths. This work provides insights towards the application of sparse grid collocation method to velocity modeling. It is demonstrated that for which problems the sparse grid collocation method is expected to be competitive with the Monte Carlo simulation. Further work about the anisotropic sparse grid collocation method should be extended to circumvent the obstacle of dimensionality. More... »

PAGES

3270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4

DOI

http://dx.doi.org/10.1007/s11431-009-0353-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047395108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "LiangSheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "JinZhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "DongXiao", 
        "id": "sg:person.015224204657.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1006564309167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008921755", 
          "https://doi.org/10.1023/a:1006564309167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006507816183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030746413", 
          "https://doi.org/10.1023/a:1006507816183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-003-0024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033090158", 
          "https://doi.org/10.1007/s00607-003-0024-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03620-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046564876", 
          "https://doi.org/10.1007/978-3-662-03620-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "Spatial variability of Darcy velocity is presented due to the heterogeneity of aquifer parameters. The uncertainty qualification of velocity suffers great challenge in the complex porous media. This work focuses on the use of sparse grid collocation method in velocity simulation. Since the sparse grid collocation method provides a non-intrusive way to incorporate any existing deterministic solver, the mixed finite element method is combined as the deterministic solver to retain the local continuity of Darcy velocity. We decompose the error of the velocity into three components, and illustrate that the Karhunen-Loeve truncation brings more error into velocity approximation than into head. The convergence properties of velocity moments restrict the application of sparse grid collocation method in the problems with small correlation lengths. This work provides insights towards the application of sparse grid collocation method to velocity modeling. It is demonstrated that for which problems the sparse grid collocation method is expected to be competitive with the Monte Carlo simulation. Further work about the anisotropic sparse grid collocation method should be extended to circumvent the obstacle of dimensionality.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11431-009-0353-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134340", 
        "issn": [
          "1674-7321", 
          "1869-1900"
        ], 
        "name": "Science China Technological Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "sparse grid collocation method", 
      "collocation method", 
      "deterministic solver", 
      "Darcy velocity", 
      "mixed finite element method", 
      "small correlation length", 
      "complex porous media", 
      "Monte Carlo simulations", 
      "velocity approximation", 
      "convergence properties", 
      "uncertainty qualification", 
      "velocity moments", 
      "finite element method", 
      "correlation length", 
      "porous media", 
      "Carlo simulations", 
      "aquifer parameters", 
      "velocity modeling", 
      "velocity simulation", 
      "element method", 
      "solver", 
      "velocity", 
      "local continuity", 
      "simulations", 
      "approximation", 
      "error", 
      "dimensionality", 
      "uncertainty", 
      "moment", 
      "applications", 
      "truncation", 
      "problem", 
      "modeling", 
      "parameters", 
      "spatial variability", 
      "properties", 
      "work", 
      "continuity", 
      "non-intrusive way", 
      "great challenge", 
      "way", 
      "length", 
      "medium", 
      "obstacles", 
      "heterogeneity", 
      "components", 
      "use", 
      "insights", 
      "variability", 
      "challenges", 
      "qualification", 
      "more errors", 
      "head", 
      "method", 
      "grid collocation method", 
      "Karhunen-Loeve truncation", 
      "anisotropic sparse grid collocation method", 
      "obstacle of dimensionality"
    ], 
    "name": "Evaluating the uncertainty of Darcy velocity with sparse grid collocation method", 
    "pagination": "3270", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047395108"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11431-009-0353-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11431-009-0353-4", 
      "https://app.dimensions.ai/details/publication/pub.1047395108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_483.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11431-009-0353-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      22 PREDICATES      89 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11431-009-0353-4 schema:about anzsrc-for:09
2 anzsrc-for:10
3 schema:author Nec7a2043360c4e2da60afb4429f5b682
4 schema:citation sg:pub.10.1007/978-1-4612-3094-6
5 sg:pub.10.1007/978-3-662-03620-4
6 sg:pub.10.1007/s00607-003-0024-4
7 sg:pub.10.1023/a:1006507816183
8 sg:pub.10.1023/a:1006564309167
9 schema:datePublished 2009-11
10 schema:datePublishedReg 2009-11-01
11 schema:description Spatial variability of Darcy velocity is presented due to the heterogeneity of aquifer parameters. The uncertainty qualification of velocity suffers great challenge in the complex porous media. This work focuses on the use of sparse grid collocation method in velocity simulation. Since the sparse grid collocation method provides a non-intrusive way to incorporate any existing deterministic solver, the mixed finite element method is combined as the deterministic solver to retain the local continuity of Darcy velocity. We decompose the error of the velocity into three components, and illustrate that the Karhunen-Loeve truncation brings more error into velocity approximation than into head. The convergence properties of velocity moments restrict the application of sparse grid collocation method in the problems with small correlation lengths. This work provides insights towards the application of sparse grid collocation method to velocity modeling. It is demonstrated that for which problems the sparse grid collocation method is expected to be competitive with the Monte Carlo simulation. Further work about the anisotropic sparse grid collocation method should be extended to circumvent the obstacle of dimensionality.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Na1106dce68b643bba18c7446747c6da1
16 Nc4d7e7a1be6f477f82badd7bc48cf91f
17 sg:journal.1134340
18 schema:keywords Carlo simulations
19 Darcy velocity
20 Karhunen-Loeve truncation
21 Monte Carlo simulations
22 anisotropic sparse grid collocation method
23 applications
24 approximation
25 aquifer parameters
26 challenges
27 collocation method
28 complex porous media
29 components
30 continuity
31 convergence properties
32 correlation length
33 deterministic solver
34 dimensionality
35 element method
36 error
37 finite element method
38 great challenge
39 grid collocation method
40 head
41 heterogeneity
42 insights
43 length
44 local continuity
45 medium
46 method
47 mixed finite element method
48 modeling
49 moment
50 more errors
51 non-intrusive way
52 obstacle of dimensionality
53 obstacles
54 parameters
55 porous media
56 problem
57 properties
58 qualification
59 simulations
60 small correlation length
61 solver
62 sparse grid collocation method
63 spatial variability
64 truncation
65 uncertainty
66 uncertainty qualification
67 use
68 variability
69 velocity
70 velocity approximation
71 velocity modeling
72 velocity moments
73 velocity simulation
74 way
75 work
76 schema:name Evaluating the uncertainty of Darcy velocity with sparse grid collocation method
77 schema:pagination 3270
78 schema:productId N07efe58629fa488095c870e765116673
79 N8698c55a350a4e21b751701352a013d3
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047395108
81 https://doi.org/10.1007/s11431-009-0353-4
82 schema:sdDatePublished 2021-11-01T18:12
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N1bdfa0004217436a8b6533d8e643290a
85 schema:url https://doi.org/10.1007/s11431-009-0353-4
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N07efe58629fa488095c870e765116673 schema:name doi
90 schema:value 10.1007/s11431-009-0353-4
91 rdf:type schema:PropertyValue
92 N1bdfa0004217436a8b6533d8e643290a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8698c55a350a4e21b751701352a013d3 schema:name dimensions_id
95 schema:value pub.1047395108
96 rdf:type schema:PropertyValue
97 Na1106dce68b643bba18c7446747c6da1 schema:volumeNumber 52
98 rdf:type schema:PublicationVolume
99 Na3d3c0344218442e9cb4386353ac59b2 rdf:first sg:person.015224204657.60
100 rdf:rest rdf:nil
101 Nc4d7e7a1be6f477f82badd7bc48cf91f schema:issueNumber 11
102 rdf:type schema:PublicationIssue
103 Nd5462f73a1b44d118b35b506114471bc rdf:first sg:person.014731165631.01
104 rdf:rest Na3d3c0344218442e9cb4386353ac59b2
105 Nec7a2043360c4e2da60afb4429f5b682 rdf:first sg:person.013753244525.37
106 rdf:rest Nd5462f73a1b44d118b35b506114471bc
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
111 schema:name Technology
112 rdf:type schema:DefinedTerm
113 sg:journal.1134340 schema:issn 1674-7321
114 1869-1900
115 schema:name Science China Technological Sciences
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.013753244525.37 schema:affiliation grid-institutes:grid.49470.3e
119 schema:familyName Shi
120 schema:givenName LiangSheng
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
122 rdf:type schema:Person
123 sg:person.014731165631.01 schema:affiliation grid-institutes:grid.49470.3e
124 schema:familyName Yang
125 schema:givenName JinZhong
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
127 rdf:type schema:Person
128 sg:person.015224204657.60 schema:affiliation grid-institutes:grid.11135.37
129 schema:familyName Zhang
130 schema:givenName DongXiao
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60
132 rdf:type schema:Person
133 sg:pub.10.1007/978-1-4612-3094-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033094591
134 https://doi.org/10.1007/978-1-4612-3094-6
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-662-03620-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046564876
137 https://doi.org/10.1007/978-3-662-03620-4
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00607-003-0024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033090158
140 https://doi.org/10.1007/s00607-003-0024-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1023/a:1006507816183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030746413
143 https://doi.org/10.1023/a:1006507816183
144 rdf:type schema:CreativeWork
145 sg:pub.10.1023/a:1006564309167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008921755
146 https://doi.org/10.1023/a:1006564309167
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.11135.37 schema:alternateName Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China
149 schema:name Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China
150 rdf:type schema:Organization
151 grid-institutes:grid.49470.3e schema:alternateName State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
152 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...