Evaluating the uncertainty of Darcy velocity with sparse grid collocation method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

LiangSheng Shi, JinZhong Yang, DongXiao Zhang

ABSTRACT

Spatial variability of Darcy velocity is presented due to the heterogeneity of aquifer parameters. The uncertainty qualification of velocity suffers great challenge in the complex porous media. This work focuses on the use of sparse grid collocation method in velocity simulation. Since the sparse grid collocation method provides a non-intrusive way to incorporate any existing deterministic solver, the mixed finite element method is combined as the deterministic solver to retain the local continuity of Darcy velocity. We decompose the error of the velocity into three components, and illustrate that the Karhunen-Loeve truncation brings more error into velocity approximation than into head. The convergence properties of velocity moments restrict the application of sparse grid collocation method in the problems with small correlation lengths. This work provides insights towards the application of sparse grid collocation method to velocity modeling. It is demonstrated that for which problems the sparse grid collocation method is expected to be competitive with the Monte Carlo simulation. Further work about the anisotropic sparse grid collocation method should be extended to circumvent the obstacle of dimensionality. More... »

PAGES

3270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4

DOI

http://dx.doi.org/10.1007/s11431-009-0353-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047395108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "LiangSheng", 
        "id": "sg:person.013753244525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "JinZhong", 
        "id": "sg:person.014731165631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "DongXiao", 
        "id": "sg:person.015224204657.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cma.2008.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003016550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.probengmech.2006.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005612858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006564309167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008921755", 
          "https://doi.org/10.1023/a:1006564309167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017845226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(66)90002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017962489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(98)00044-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94wr01786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024871097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2008.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025037682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026493242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(01)00022-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028693283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006507816183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030746413", 
          "https://doi.org/10.1023/a:1006507816183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032397751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-003-0024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033090158", 
          "https://doi.org/10.1007/s00607-003-0024-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033094591", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3094-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094591", 
          "https://doi.org/10.1007/978-1-4612-3094-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2007.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033478254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94wr00061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034986560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2007.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037443681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1998.6150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040183879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2006.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043998082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03620-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046564876", 
          "https://doi.org/10.1007/978-3-662-03620-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03620-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046564876", 
          "https://doi.org/10.1007/978-3-662-03620-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/92wr01686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048596757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040615201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050645142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060663660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070680540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062850854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142994262585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142995290063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877307"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "Spatial variability of Darcy velocity is presented due to the heterogeneity of aquifer parameters. The uncertainty qualification of velocity suffers great challenge in the complex porous media. This work focuses on the use of sparse grid collocation method in velocity simulation. Since the sparse grid collocation method provides a non-intrusive way to incorporate any existing deterministic solver, the mixed finite element method is combined as the deterministic solver to retain the local continuity of Darcy velocity. We decompose the error of the velocity into three components, and illustrate that the Karhunen-Loeve truncation brings more error into velocity approximation than into head. The convergence properties of velocity moments restrict the application of sparse grid collocation method in the problems with small correlation lengths. This work provides insights towards the application of sparse grid collocation method to velocity modeling. It is demonstrated that for which problems the sparse grid collocation method is expected to be competitive with the Monte Carlo simulation. Further work about the anisotropic sparse grid collocation method should be extended to circumvent the obstacle of dimensionality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11431-009-0353-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312376", 
        "issn": [
          "1006-9321"
        ], 
        "name": "Science in China Series E: Technological Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Evaluating the uncertainty of Darcy velocity with sparse grid collocation method", 
    "pagination": "3270", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1c655b58d66c6f479402662b3cf9602c790fafdefbee4262680ec31184046ec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11431-009-0353-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047395108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11431-009-0353-4", 
      "https://app.dimensions.ai/details/publication/pub.1047395108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99802_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11431-009-0353-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11431-009-0353-4'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11431-009-0353-4 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N984cde9874e0470ab6e4d04a73809d9e
4 schema:citation sg:pub.10.1007/978-1-4612-3094-6
5 sg:pub.10.1007/978-3-662-03620-4
6 sg:pub.10.1007/s00607-003-0024-4
7 sg:pub.10.1023/a:1006507816183
8 sg:pub.10.1023/a:1006564309167
9 https://app.dimensions.ai/details/publication/pub.1033094591
10 https://doi.org/10.1006/jcph.1998.6150
11 https://doi.org/10.1016/0041-5553(66)90002-4
12 https://doi.org/10.1016/j.cma.2007.04.005
13 https://doi.org/10.1016/j.cma.2008.03.025
14 https://doi.org/10.1016/j.finel.2007.11.015
15 https://doi.org/10.1016/j.jcp.2006.12.014
16 https://doi.org/10.1016/j.jcp.2008.06.008
17 https://doi.org/10.1016/j.jcp.2008.07.009
18 https://doi.org/10.1016/j.jhydrol.2008.11.012
19 https://doi.org/10.1016/j.probengmech.2006.11.004
20 https://doi.org/10.1016/s0309-1708(01)00022-7
21 https://doi.org/10.1016/s0309-1708(98)00044-x
22 https://doi.org/10.1029/2006wr005673
23 https://doi.org/10.1029/92wr01686
24 https://doi.org/10.1029/94wr00061
25 https://doi.org/10.1029/94wr01786
26 https://doi.org/10.1137/040615201
27 https://doi.org/10.1137/050645142
28 https://doi.org/10.1137/060663660
29 https://doi.org/10.1137/070680540
30 https://doi.org/10.1137/s0036142994262585
31 https://doi.org/10.1137/s0036142995290063
32 schema:datePublished 2009-11
33 schema:datePublishedReg 2009-11-01
34 schema:description Spatial variability of Darcy velocity is presented due to the heterogeneity of aquifer parameters. The uncertainty qualification of velocity suffers great challenge in the complex porous media. This work focuses on the use of sparse grid collocation method in velocity simulation. Since the sparse grid collocation method provides a non-intrusive way to incorporate any existing deterministic solver, the mixed finite element method is combined as the deterministic solver to retain the local continuity of Darcy velocity. We decompose the error of the velocity into three components, and illustrate that the Karhunen-Loeve truncation brings more error into velocity approximation than into head. The convergence properties of velocity moments restrict the application of sparse grid collocation method in the problems with small correlation lengths. This work provides insights towards the application of sparse grid collocation method to velocity modeling. It is demonstrated that for which problems the sparse grid collocation method is expected to be competitive with the Monte Carlo simulation. Further work about the anisotropic sparse grid collocation method should be extended to circumvent the obstacle of dimensionality.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Na5a66a172b7241c0973508310b4a922e
39 Nb266ecc3659c4c0a8593b68efc2d1cea
40 sg:journal.1312376
41 schema:name Evaluating the uncertainty of Darcy velocity with sparse grid collocation method
42 schema:pagination 3270
43 schema:productId N36145e9838b44bc3a2bb931b6d5bb53c
44 N46dedca07e734b9fa145cc09798b9d86
45 Na61c430f7728436198c26697f6be4baa
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047395108
47 https://doi.org/10.1007/s11431-009-0353-4
48 schema:sdDatePublished 2019-04-11T09:30
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N6d49dde16c5e4ff2afc3c31d4a10f584
51 schema:url http://link.springer.com/10.1007%2Fs11431-009-0353-4
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N36145e9838b44bc3a2bb931b6d5bb53c schema:name readcube_id
56 schema:value e1c655b58d66c6f479402662b3cf9602c790fafdefbee4262680ec31184046ec
57 rdf:type schema:PropertyValue
58 N3f568478986e44238fee9872592785e1 rdf:first sg:person.014731165631.01
59 rdf:rest N9e1a5db6d3f44b75b233c57e4818f477
60 N46dedca07e734b9fa145cc09798b9d86 schema:name doi
61 schema:value 10.1007/s11431-009-0353-4
62 rdf:type schema:PropertyValue
63 N6d49dde16c5e4ff2afc3c31d4a10f584 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N984cde9874e0470ab6e4d04a73809d9e rdf:first sg:person.013753244525.37
66 rdf:rest N3f568478986e44238fee9872592785e1
67 N9e1a5db6d3f44b75b233c57e4818f477 rdf:first sg:person.015224204657.60
68 rdf:rest rdf:nil
69 Na5a66a172b7241c0973508310b4a922e schema:volumeNumber 52
70 rdf:type schema:PublicationVolume
71 Na61c430f7728436198c26697f6be4baa schema:name dimensions_id
72 schema:value pub.1047395108
73 rdf:type schema:PropertyValue
74 Nb266ecc3659c4c0a8593b68efc2d1cea schema:issueNumber 11
75 rdf:type schema:PublicationIssue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Numerical and Computational Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1312376 schema:issn 1006-9321
83 schema:name Science in China Series E: Technological Sciences
84 rdf:type schema:Periodical
85 sg:person.013753244525.37 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
86 schema:familyName Shi
87 schema:givenName LiangSheng
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013753244525.37
89 rdf:type schema:Person
90 sg:person.014731165631.01 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
91 schema:familyName Yang
92 schema:givenName JinZhong
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014731165631.01
94 rdf:type schema:Person
95 sg:person.015224204657.60 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
96 schema:familyName Zhang
97 schema:givenName DongXiao
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224204657.60
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4612-3094-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033094591
101 https://doi.org/10.1007/978-1-4612-3094-6
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-662-03620-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046564876
104 https://doi.org/10.1007/978-3-662-03620-4
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00607-003-0024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033090158
107 https://doi.org/10.1007/s00607-003-0024-4
108 rdf:type schema:CreativeWork
109 sg:pub.10.1023/a:1006507816183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030746413
110 https://doi.org/10.1023/a:1006507816183
111 rdf:type schema:CreativeWork
112 sg:pub.10.1023/a:1006564309167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008921755
113 https://doi.org/10.1023/a:1006564309167
114 rdf:type schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1033094591 schema:CreativeWork
116 https://doi.org/10.1006/jcph.1998.6150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040183879
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0041-5553(66)90002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017962489
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.cma.2007.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033478254
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cma.2008.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003016550
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.finel.2007.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037443681
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jcp.2006.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043998082
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jcp.2008.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025037682
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jcp.2008.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017845226
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jhydrol.2008.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032397751
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.probengmech.2006.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005612858
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0309-1708(01)00022-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028693283
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0309-1708(98)00044-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817273
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1029/2006wr005673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026493242
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1029/92wr01686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048596757
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1029/94wr00061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034986560
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/94wr01786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024871097
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/040615201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845261
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1137/050645142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846717
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/060663660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849502
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1137/070680540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062850854
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1137/s0036142994262585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877176
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1137/s0036142995290063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877307
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
161 schema:name Department of Energy and Resources Engineering, College of Engineering, Peking University, 100871, Beijing, China
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
164 schema:name State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...