High-temperature oxidation behavior of Al2O3/TiAl matrix composite in air View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

TaoTao Ai, Fen Wang, XiaoMing Feng

ABSTRACT

The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. More... »

PAGES

1273-1282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11431-008-0223-5

DOI

http://dx.doi.org/10.1007/s11431-008-0223-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025502297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shaanxi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412500.2", 
          "name": [
            "Department of Materials Science and Engineering, Shaanxi University of Technology, 723003, Hanzhong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ai", 
        "givenName": "TaoTao", 
        "id": "sg:person.015554474667.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015554474667.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shaanxi University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454711.2", 
          "name": [
            "School of Materials Science and Engineering, Shaanxi University of Science and Technology, 710021, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fen", 
        "id": "sg:person.011364110561.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364110561.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shaanxi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412500.2", 
          "name": [
            "Department of Materials Science and Engineering, Shaanxi University of Technology, 723003, Hanzhong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "XiaoMing", 
        "id": "sg:person.013200160615.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013200160615.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0921-5093(98)01158-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006461281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-9795(01)00024-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006761195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1993.tb03964.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012586346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-9795(02)00233-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023347338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-9795(02)00233-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023347338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03221103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024842510", 
          "https://doi.org/10.1007/bf03221103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.34.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030003203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.41.1118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032564802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11670-003-0006-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033271780", 
          "https://doi.org/10.1007/s11670-003-0006-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(97)00085-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038480919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0966-9795(96)00017-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043568860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1993.tb03965.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043909985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023035809950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046449280", 
          "https://doi.org/10.1023/a:1023035809950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(65)90066-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049906447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(65)90066-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049906447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.12570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.12570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900\u00b0 in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900\u00b0C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 \u03bcm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11431-008-0223-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312376", 
        "issn": [
          "1006-9321"
        ], 
        "name": "Science in China Series E: Technological Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "High-temperature oxidation behavior of Al2O3/TiAl matrix composite in air", 
    "pagination": "1273-1282", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "797e8322f5817c44086b6dbb2bc9113d9b85f35099c9ecb25ea9244a0fc809cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11431-008-0223-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025502297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11431-008-0223-5", 
      "https://app.dimensions.ai/details/publication/pub.1025502297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11431-008-0223-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11431-008-0223-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11431-008-0223-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11431-008-0223-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11431-008-0223-5'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11431-008-0223-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf1caee2d1e9d42a4b3edb791f66fed47
4 schema:citation sg:pub.10.1007/bf03221103
5 sg:pub.10.1007/s11670-003-0006-2
6 sg:pub.10.1023/a:1023035809950
7 https://doi.org/10.1016/0022-3697(65)90066-1
8 https://doi.org/10.1016/0966-9795(96)00017-9
9 https://doi.org/10.1016/s0921-5093(97)00085-3
10 https://doi.org/10.1016/s0921-5093(98)01158-7
11 https://doi.org/10.1016/s0966-9795(01)00024-3
12 https://doi.org/10.1016/s0966-9795(02)00233-9
13 https://doi.org/10.1103/physrevb.61.12570
14 https://doi.org/10.1111/j.1151-2916.1993.tb03964.x
15 https://doi.org/10.1111/j.1151-2916.1993.tb03965.x
16 https://doi.org/10.2320/matertrans1989.34.236
17 https://doi.org/10.2320/matertrans1989.41.1118
18 schema:datePublished 2009-05
19 schema:datePublishedReg 2009-05-01
20 schema:description The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N8008984651fb4a1a91be614c3f9f93a6
25 N869fcf90b1f64108b5bcc21d5896da6f
26 sg:journal.1312376
27 schema:name High-temperature oxidation behavior of Al2O3/TiAl matrix composite in air
28 schema:pagination 1273-1282
29 schema:productId N1ca67f802b844d83afba6b2013ba1467
30 N25e7f6084ed343dba27a5e37cac8e82b
31 Neb2a3c5e180c4473aaae24a6a6018a2a
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025502297
33 https://doi.org/10.1007/s11431-008-0223-5
34 schema:sdDatePublished 2019-04-10T21:39
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Ndbca9e47e0a344c98c5dd5263e4801b6
37 schema:url http://link.springer.com/10.1007%2Fs11431-008-0223-5
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1ca67f802b844d83afba6b2013ba1467 schema:name dimensions_id
42 schema:value pub.1025502297
43 rdf:type schema:PropertyValue
44 N25e7f6084ed343dba27a5e37cac8e82b schema:name readcube_id
45 schema:value 797e8322f5817c44086b6dbb2bc9113d9b85f35099c9ecb25ea9244a0fc809cd
46 rdf:type schema:PropertyValue
47 N3390fd2da02f4d579cbeed9bdbc61414 rdf:first sg:person.011364110561.05
48 rdf:rest N8fec20ef9b214c57af6edbd75fa53e7a
49 N8008984651fb4a1a91be614c3f9f93a6 schema:volumeNumber 52
50 rdf:type schema:PublicationVolume
51 N869fcf90b1f64108b5bcc21d5896da6f schema:issueNumber 5
52 rdf:type schema:PublicationIssue
53 N8fec20ef9b214c57af6edbd75fa53e7a rdf:first sg:person.013200160615.50
54 rdf:rest rdf:nil
55 Ndbca9e47e0a344c98c5dd5263e4801b6 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Neb2a3c5e180c4473aaae24a6a6018a2a schema:name doi
58 schema:value 10.1007/s11431-008-0223-5
59 rdf:type schema:PropertyValue
60 Nf1caee2d1e9d42a4b3edb791f66fed47 rdf:first sg:person.015554474667.03
61 rdf:rest N3390fd2da02f4d579cbeed9bdbc61414
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
66 schema:name Materials Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1312376 schema:issn 1006-9321
69 schema:name Science in China Series E: Technological Sciences
70 rdf:type schema:Periodical
71 sg:person.011364110561.05 schema:affiliation https://www.grid.ac/institutes/grid.454711.2
72 schema:familyName Wang
73 schema:givenName Fen
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364110561.05
75 rdf:type schema:Person
76 sg:person.013200160615.50 schema:affiliation https://www.grid.ac/institutes/grid.412500.2
77 schema:familyName Feng
78 schema:givenName XiaoMing
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013200160615.50
80 rdf:type schema:Person
81 sg:person.015554474667.03 schema:affiliation https://www.grid.ac/institutes/grid.412500.2
82 schema:familyName Ai
83 schema:givenName TaoTao
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015554474667.03
85 rdf:type schema:Person
86 sg:pub.10.1007/bf03221103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024842510
87 https://doi.org/10.1007/bf03221103
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s11670-003-0006-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033271780
90 https://doi.org/10.1007/s11670-003-0006-2
91 rdf:type schema:CreativeWork
92 sg:pub.10.1023/a:1023035809950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046449280
93 https://doi.org/10.1023/a:1023035809950
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0022-3697(65)90066-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049906447
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0966-9795(96)00017-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043568860
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0921-5093(97)00085-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038480919
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0921-5093(98)01158-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006461281
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0966-9795(01)00024-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006761195
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0966-9795(02)00233-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023347338
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.61.12570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060595139
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1111/j.1151-2916.1993.tb03964.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012586346
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1111/j.1151-2916.1993.tb03965.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043909985
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2320/matertrans1989.34.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030003203
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2320/matertrans1989.41.1118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032564802
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.412500.2 schema:alternateName Shaanxi University of Technology
118 schema:name Department of Materials Science and Engineering, Shaanxi University of Technology, 723003, Hanzhong, China
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.454711.2 schema:alternateName Shaanxi University of Science and Technology
121 schema:name School of Materials Science and Engineering, Shaanxi University of Science and Technology, 710021, Xi’an, China
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...