Quantitative climatic reconstruction of the Last Glacial Maximum in China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-25

AUTHORS

Haibin Wu, Qin Li, Yanyan Yu, Aizhi Sun, Yating Lin, Wenqi Jiang, Yunli Luo

ABSTRACT

Quantitative paleoclimatic reconstruction is crucial for understanding the operation and evolution of the global climate system. For example, a quantitative paleoclimatic reconstruction for the Last Glacial Maximum (18±2 ka 14C, LGM) is fundamental to understanding the evolution of Earth’s climate during the last glacial-interglacial cycle. Previous quantitative palaeoclimate reconstructions in China are generally based on statistical comparison of modern pollen assemblages and modern climate data. These methods are based on the premise that vegetation-climate interactions remain the same through time, and implicitly assume that the interactions are independent of changes in seasonality and atmospheric CO2 concentration. However, these assumptions may not always be valid, which may affect the reconstructions. Here, we present the results of a quantitative study of the LGM climate of China based on an improved inverse vegetation model which incorporates physiological processes combined with a new China Quaternary Pollen Database. The results indicate that during the LGM, mean annual temperature (ANNT), mean temperature of the coldest month (MTCO) and mean temperature of the warmest month in China were lower by ~5.6±0.8, ~11.0±1.6 and ~2.6±0.9°C, respectively, compared to today, and that the changes in ANNT were mainly due to the decrease of MTCO. The ANNT decrease in southern China was ~5.5±0.5°C. Mean annual precipitation was lower by ~46.3±17.8 mm compared to today and was especially low in northern China (~51.2±21.4 mm) due to the decrease in summer rainfall. Comparison of our results with recent outputs from paleoclimatic modelling reveals that while the latter are broadly consistent with our estimated changes in mean annual climatic parameters, there are substantial differences in the seasonal climatic parameters. Our results highlight the crucial importance of developing seasonal simulation on paleoclimatic models, as well as the need to improve the quality of paleoclimatic reconstructions based on proxy records from geological archives. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11430-018-9338-3

DOI

http://dx.doi.org/10.1007/s11430-018-9338-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113054248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "CAS Center for Excellence in Life and Paleoenvironment, 100044, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Haibin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "CAS Center for Excellence in Tibetan Plateau Earth Sciences, 100101, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geology and Geophysics", 
          "id": "https://www.grid.ac/institutes/grid.458476.c", 
          "name": [
            "Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yanyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Aizhi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yating", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Wenqi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Botany", 
          "id": "https://www.grid.ac/institutes/grid.435133.3", 
          "name": [
            "Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Yunli", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/qres.1997.1961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000615311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610109104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003878817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004432559", 
          "https://doi.org/10.1007/s003820050318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.palaeo.2016.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006018898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.palaeo.2011.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007079138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007959570", 
          "https://doi.org/10.1038/nclimate1456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.2000.00425.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008486387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009419981", 
          "https://doi.org/10.1038/nature02599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009419981", 
          "https://doi.org/10.1038/nature02599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0231-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010793663", 
          "https://doi.org/10.1007/s00382-007-0231-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0231-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010793663", 
          "https://doi.org/10.1007/s00382-007-0231-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1407229111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011370995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.earth.32.101802.120435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012092885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.palaeo.2006.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013301355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018178491", 
          "https://doi.org/10.1007/s003820050317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crte.2008.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019385717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep11186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020761303", 
          "https://doi.org/10.1038/srep11186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl070152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023174755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0509-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025249729", 
          "https://doi.org/10.1007/s00382-008-0509-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0509-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025249729", 
          "https://doi.org/10.1007/s00382-008-0509-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/cp-9-811-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031636510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012eo510010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032543640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0904-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036742057", 
          "https://doi.org/10.1007/s00382-010-0904-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0277-3791(98)00013-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039878886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042639835", 
          "https://doi.org/10.1038/nclimate2649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(99)00219-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044129219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047347144", 
          "https://doi.org/10.1038/ngeo411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/cp-3-261-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047965598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.191.4232.1131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062513251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.263.5147.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062547634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5313.786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5342.1422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemgeo.2017.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085432857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quascirev.2017.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092548744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-10-4035-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092574097"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-25", 
    "datePublishedReg": "2019-03-25", 
    "description": "Quantitative paleoclimatic reconstruction is crucial for understanding the operation and evolution of the global climate system. For example, a quantitative paleoclimatic reconstruction for the Last Glacial Maximum (18\u00b12 ka 14C, LGM) is fundamental to understanding the evolution of Earth\u2019s climate during the last glacial-interglacial cycle. Previous quantitative palaeoclimate reconstructions in China are generally based on statistical comparison of modern pollen assemblages and modern climate data. These methods are based on the premise that vegetation-climate interactions remain the same through time, and implicitly assume that the interactions are independent of changes in seasonality and atmospheric CO2 concentration. However, these assumptions may not always be valid, which may affect the reconstructions. Here, we present the results of a quantitative study of the LGM climate of China based on an improved inverse vegetation model which incorporates physiological processes combined with a new China Quaternary Pollen Database. The results indicate that during the LGM, mean annual temperature (ANNT), mean temperature of the coldest month (MTCO) and mean temperature of the warmest month in China were lower by ~5.6\u00b10.8, ~11.0\u00b11.6 and ~2.6\u00b10.9\u00b0C, respectively, compared to today, and that the changes in ANNT were mainly due to the decrease of MTCO. The ANNT decrease in southern China was ~5.5\u00b10.5\u00b0C. Mean annual precipitation was lower by ~46.3\u00b117.8 mm compared to today and was especially low in northern China (~51.2\u00b121.4 mm) due to the decrease in summer rainfall. Comparison of our results with recent outputs from paleoclimatic modelling reveals that while the latter are broadly consistent with our estimated changes in mean annual climatic parameters, there are substantial differences in the seasonal climatic parameters. Our results highlight the crucial importance of developing seasonal simulation on paleoclimatic models, as well as the need to improve the quality of paleoclimatic reconstructions based on proxy records from geological archives.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11430-018-9338-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6977247", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312375", 
        "issn": [
          "1006-9267", 
          "1006-9313"
        ], 
        "name": "Science China Earth Sciences", 
        "type": "Periodical"
      }
    ], 
    "name": "Quantitative climatic reconstruction of the Last Glacial Maximum in China", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6423bb3b82e8187947de9390d786dd8f362280d2d9036de7b2c30f22c956cfdd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11430-018-9338-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113054248"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11430-018-9338-3", 
      "https://app.dimensions.ai/details/publication/pub.1113054248"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78970_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11430-018-9338-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11430-018-9338-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11430-018-9338-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11430-018-9338-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11430-018-9338-3'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      56 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11430-018-9338-3 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N7d45835f3afb46068f793ec891e6694b
4 schema:citation sg:pub.10.1007/s00382-007-0231-3
5 sg:pub.10.1007/s00382-008-0509-0
6 sg:pub.10.1007/s00382-010-0904-1
7 sg:pub.10.1007/s003820050317
8 sg:pub.10.1007/s003820050318
9 sg:pub.10.1038/nature02599
10 sg:pub.10.1038/nclimate1456
11 sg:pub.10.1038/nclimate2649
12 sg:pub.10.1038/ngeo411
13 sg:pub.10.1038/srep11186
14 https://doi.org/10.1002/2016gl070152
15 https://doi.org/10.1006/qres.1997.1961
16 https://doi.org/10.1016/j.chemgeo.2017.05.014
17 https://doi.org/10.1016/j.crte.2008.01.001
18 https://doi.org/10.1016/j.palaeo.2006.12.012
19 https://doi.org/10.1016/j.palaeo.2011.07.003
20 https://doi.org/10.1016/j.palaeo.2016.04.020
21 https://doi.org/10.1016/j.quascirev.2017.10.014
22 https://doi.org/10.1016/s0277-3791(98)00013-4
23 https://doi.org/10.1016/s0304-3800(99)00219-7
24 https://doi.org/10.1029/2012eo510010
25 https://doi.org/10.1046/j.1365-2699.2000.00425.x
26 https://doi.org/10.1073/pnas.0610109104
27 https://doi.org/10.1073/pnas.1407229111
28 https://doi.org/10.1126/science.191.4232.1131
29 https://doi.org/10.1126/science.263.5147.665
30 https://doi.org/10.1126/science.276.5313.786
31 https://doi.org/10.1126/science.278.5342.1422
32 https://doi.org/10.1146/annurev.earth.32.101802.120435
33 https://doi.org/10.5194/cp-3-261-2007
34 https://doi.org/10.5194/cp-9-811-2013
35 https://doi.org/10.5194/gmd-10-4035-2017
36 schema:datePublished 2019-03-25
37 schema:datePublishedReg 2019-03-25
38 schema:description Quantitative paleoclimatic reconstruction is crucial for understanding the operation and evolution of the global climate system. For example, a quantitative paleoclimatic reconstruction for the Last Glacial Maximum (18±2 ka 14C, LGM) is fundamental to understanding the evolution of Earth’s climate during the last glacial-interglacial cycle. Previous quantitative palaeoclimate reconstructions in China are generally based on statistical comparison of modern pollen assemblages and modern climate data. These methods are based on the premise that vegetation-climate interactions remain the same through time, and implicitly assume that the interactions are independent of changes in seasonality and atmospheric CO2 concentration. However, these assumptions may not always be valid, which may affect the reconstructions. Here, we present the results of a quantitative study of the LGM climate of China based on an improved inverse vegetation model which incorporates physiological processes combined with a new China Quaternary Pollen Database. The results indicate that during the LGM, mean annual temperature (ANNT), mean temperature of the coldest month (MTCO) and mean temperature of the warmest month in China were lower by ~5.6±0.8, ~11.0±1.6 and ~2.6±0.9°C, respectively, compared to today, and that the changes in ANNT were mainly due to the decrease of MTCO. The ANNT decrease in southern China was ~5.5±0.5°C. Mean annual precipitation was lower by ~46.3±17.8 mm compared to today and was especially low in northern China (~51.2±21.4 mm) due to the decrease in summer rainfall. Comparison of our results with recent outputs from paleoclimatic modelling reveals that while the latter are broadly consistent with our estimated changes in mean annual climatic parameters, there are substantial differences in the seasonal climatic parameters. Our results highlight the crucial importance of developing seasonal simulation on paleoclimatic models, as well as the need to improve the quality of paleoclimatic reconstructions based on proxy records from geological archives.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1312375
43 schema:name Quantitative climatic reconstruction of the Last Glacial Maximum in China
44 schema:pagination 1-10
45 schema:productId N0bac310a4d6f4383884560cb3e990abb
46 Nb445ad886c76486dadcdc10e1cf57317
47 Nc57c5c867e3a402481b42a5741c6f90f
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113054248
49 https://doi.org/10.1007/s11430-018-9338-3
50 schema:sdDatePublished 2019-04-11T13:20
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Na55036ceac38416a8fc1d06febea7d35
53 schema:url https://link.springer.com/10.1007%2Fs11430-018-9338-3
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0bac310a4d6f4383884560cb3e990abb schema:name readcube_id
58 schema:value 6423bb3b82e8187947de9390d786dd8f362280d2d9036de7b2c30f22c956cfdd
59 rdf:type schema:PropertyValue
60 N100fc20e10f546aeb634d8fc1b5cb8c9 rdf:first N5f3eb8fc73164302b3b883feeb5835d1
61 rdf:rest Nd2b28bdb39a548b09951eab0549bc48c
62 N10d826bf23a248efb707e85be58dd6dd rdf:first N55886ffc07064cd6b1805005de3f6d1a
63 rdf:rest N7214a2a41be54c078e3b9668d12fffaf
64 N2ea974bf275f40798b414cec6035194f schema:affiliation https://www.grid.ac/institutes/grid.9227.e
65 schema:familyName Li
66 schema:givenName Qin
67 rdf:type schema:Person
68 N32dd655726944bf7a0506d2ff7abed80 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
69 schema:familyName Lin
70 schema:givenName Yating
71 rdf:type schema:Person
72 N3464dfc1c17747469abfeb1fe69c5171 schema:affiliation https://www.grid.ac/institutes/grid.435133.3
73 schema:familyName Luo
74 schema:givenName Yunli
75 rdf:type schema:Person
76 N55886ffc07064cd6b1805005de3f6d1a schema:affiliation https://www.grid.ac/institutes/grid.410726.6
77 schema:familyName Sun
78 schema:givenName Aizhi
79 rdf:type schema:Person
80 N5f3eb8fc73164302b3b883feeb5835d1 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
81 schema:familyName Jiang
82 schema:givenName Wenqi
83 rdf:type schema:Person
84 N7214a2a41be54c078e3b9668d12fffaf rdf:first N32dd655726944bf7a0506d2ff7abed80
85 rdf:rest N100fc20e10f546aeb634d8fc1b5cb8c9
86 N7d45835f3afb46068f793ec891e6694b rdf:first N916d6a4d68244c3fa56adee935c57ab1
87 rdf:rest N8aef3ef99aee4eed9e96b5de2f67c488
88 N8aef3ef99aee4eed9e96b5de2f67c488 rdf:first N2ea974bf275f40798b414cec6035194f
89 rdf:rest Nff2877f32c68408da289bc9c75198621
90 N916d6a4d68244c3fa56adee935c57ab1 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
91 schema:familyName Wu
92 schema:givenName Haibin
93 rdf:type schema:Person
94 Na55036ceac38416a8fc1d06febea7d35 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nb445ad886c76486dadcdc10e1cf57317 schema:name dimensions_id
97 schema:value pub.1113054248
98 rdf:type schema:PropertyValue
99 Nc57c5c867e3a402481b42a5741c6f90f schema:name doi
100 schema:value 10.1007/s11430-018-9338-3
101 rdf:type schema:PropertyValue
102 Nd2b28bdb39a548b09951eab0549bc48c rdf:first N3464dfc1c17747469abfeb1fe69c5171
103 rdf:rest rdf:nil
104 Ne2b61cc7a41b48e9be6cdc2f20bda228 schema:affiliation https://www.grid.ac/institutes/grid.458476.c
105 schema:familyName Yu
106 schema:givenName Yanyan
107 rdf:type schema:Person
108 Nff2877f32c68408da289bc9c75198621 rdf:first Ne2b61cc7a41b48e9be6cdc2f20bda228
109 rdf:rest N10d826bf23a248efb707e85be58dd6dd
110 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
111 schema:name Earth Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Geography and Environmental Geoscience
115 rdf:type schema:DefinedTerm
116 sg:grant.6977247 http://pending.schema.org/fundedItem sg:pub.10.1007/s11430-018-9338-3
117 rdf:type schema:MonetaryGrant
118 sg:journal.1312375 schema:issn 1006-9267
119 1006-9313
120 schema:name Science China Earth Sciences
121 rdf:type schema:Periodical
122 sg:pub.10.1007/s00382-007-0231-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010793663
123 https://doi.org/10.1007/s00382-007-0231-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00382-008-0509-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025249729
126 https://doi.org/10.1007/s00382-008-0509-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00382-010-0904-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036742057
129 https://doi.org/10.1007/s00382-010-0904-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s003820050317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018178491
132 https://doi.org/10.1007/s003820050317
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s003820050318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004432559
135 https://doi.org/10.1007/s003820050318
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature02599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009419981
138 https://doi.org/10.1038/nature02599
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nclimate1456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007959570
141 https://doi.org/10.1038/nclimate1456
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nclimate2649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042639835
144 https://doi.org/10.1038/nclimate2649
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ngeo411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047347144
147 https://doi.org/10.1038/ngeo411
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/srep11186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020761303
150 https://doi.org/10.1038/srep11186
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/2016gl070152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023174755
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1006/qres.1997.1961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000615311
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.chemgeo.2017.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085432857
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.crte.2008.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019385717
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.palaeo.2006.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013301355
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.palaeo.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007079138
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.palaeo.2016.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006018898
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.quascirev.2017.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092548744
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0277-3791(98)00013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039878886
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0304-3800(99)00219-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044129219
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1029/2012eo510010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032543640
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1046/j.1365-2699.2000.00425.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008486387
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.0610109104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878817
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.1407229111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011370995
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.191.4232.1131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062513251
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.263.5147.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062547634
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.276.5313.786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556575
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.278.5342.1422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558742
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1146/annurev.earth.32.101802.120435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012092885
189 rdf:type schema:CreativeWork
190 https://doi.org/10.5194/cp-3-261-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047965598
191 rdf:type schema:CreativeWork
192 https://doi.org/10.5194/cp-9-811-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031636510
193 rdf:type schema:CreativeWork
194 https://doi.org/10.5194/gmd-10-4035-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092574097
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
197 schema:name CAS Center for Excellence in Life and Paleoenvironment, 100044, Beijing, China
198 Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
199 University of Chinese Academy of Sciences, 100049, Beijing, China
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.435133.3 schema:alternateName Institute of Botany
202 schema:name Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.458476.c schema:alternateName Institute of Geology and Geophysics
205 schema:name Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
208 schema:name CAS Center for Excellence in Tibetan Plateau Earth Sciences, 100101, Beijing, China
209 Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...