Seasonally evolving dominant interannual variability mode of air-sea CO2 flux over the western North Pacific simulated by CESM1-BGC View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-22

AUTHORS

ChenXi Jin, TianJun Zhou, XiaoLong Chen, Bo Wu

ABSTRACT

We applied a season-reliant empirical orthogonal function (S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO2 flux over the western North Pacific (WNP) (0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Niño-Southern Oscillation (ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone (WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO2 uptake by enhancing surface seawater CO2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO2 flux anomalies in the spring. More... »

PAGES

1854-1865

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11430-015-9085-4

DOI

http://dx.doi.org/10.1007/s11430-015-9085-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091323743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
            "Beijing Meteorological Service Center, 100089, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "ChenXi", 
        "id": "sg:person.016506136343.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016506136343.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "TianJun", 
        "id": "sg:person.011071224271.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071224271.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "XiaoLong", 
        "id": "sg:person.01253576673.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253576673.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Bo", 
        "id": "sg:person.012063027405.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063027405.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11434-011-4372-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033710580", 
          "https://doi.org/10.1007/s11434-011-4372-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10872-009-0060-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048254741", 
          "https://doi.org/10.1007/s10872-009-0060-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13351-014-4501-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014513961", 
          "https://doi.org/10.1007/s13351-014-4501-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-22", 
    "datePublishedReg": "2017-08-22", 
    "description": "We applied a season-reliant empirical orthogonal function (S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO2 flux over the western North Pacific (WNP) (0\u00b0\u201335\u00b0N, 110\u00b0E\u2013150\u00b0E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Ni\u00f1o-Southern Oscillation (ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone (WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO2 uptake by enhancing surface seawater CO2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO2 flux anomalies in the spring.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11430-015-9085-4", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8224859", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8228378", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312375", 
        "issn": [
          "1674-7313", 
          "1869-1897"
        ], 
        "name": "Science China Earth Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "western North Pacific anticyclone", 
      "El Ni\u00f1o\u2013Southern Oscillation", 
      "western North Pacific", 
      "air-sea CO2", 
      "China marginal seas", 
      "gas transfer coefficient", 
      "oceanic CO2", 
      "marginal seas", 
      "North Pacific", 
      "season-reliant empirical orthogonal function (S-EOF) analysis", 
      "Community Earth System Model", 
      "empirical orthogonal function (EOF) analysis", 
      "ENSO mature phase", 
      "interannual variability modes", 
      "North Pacific anticyclone", 
      "CO2 flux anomalies", 
      "Ni\u00f1o\u2013Southern Oscillation", 
      "total interannual variance", 
      "Earth System Model", 
      "sea surface temperature", 
      "surface wind speed", 
      "Pacific anticyclone", 
      "flux anomalies", 
      "variability modes", 
      "pressure anomalies", 
      "eastward shift", 
      "interannual variance", 
      "CESM1-BGC", 
      "surface temperature", 
      "mature phase", 
      "CO2 partial pressure", 
      "subsequent spring", 
      "mode accounts", 
      "wind speed", 
      "Pacific", 
      "anomalies", 
      "Sea", 
      "system model", 
      "CO2", 
      "spring", 
      "function analysis", 
      "anticyclone", 
      "northwest", 
      "winter", 
      "summer", 
      "partial pressure", 
      "evaporation", 
      "oscillations", 
      "evolution", 
      "phase", 
      "fall", 
      "temperature", 
      "contribution", 
      "shift", 
      "coefficient", 
      "model", 
      "process", 
      "speed", 
      "variance", 
      "pressure", 
      "analysis", 
      "position", 
      "results", 
      "mode", 
      "account", 
      "version", 
      "transfer coefficient", 
      "effect"
    ], 
    "name": "Seasonally evolving dominant interannual variability mode of air-sea CO2 flux over the western North Pacific simulated by CESM1-BGC", 
    "pagination": "1854-1865", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091323743"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11430-015-9085-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11430-015-9085-4", 
      "https://app.dimensions.ai/details/publication/pub.1091323743"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11430-015-9085-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-9085-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-9085-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-9085-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-9085-4'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      95 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11430-015-9085-4 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Ne132ee376aab4c0aa011da7f8a7781b3
4 schema:citation sg:pub.10.1007/s10872-009-0060-6
5 sg:pub.10.1007/s11434-011-4372-8
6 sg:pub.10.1007/s13351-014-4501-9
7 schema:datePublished 2017-08-22
8 schema:datePublishedReg 2017-08-22
9 schema:description We applied a season-reliant empirical orthogonal function (S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO2 flux over the western North Pacific (WNP) (0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Niño-Southern Oscillation (ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone (WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO2 uptake by enhancing surface seawater CO2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO2 flux anomalies in the spring.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf Na0bf2bc861814559b7b2117f760da177
13 Nd36ebdea61684a3c9f4deefe187f822c
14 sg:journal.1312375
15 schema:keywords CESM1-BGC
16 CO2
17 CO2 flux anomalies
18 CO2 partial pressure
19 China marginal seas
20 Community Earth System Model
21 ENSO mature phase
22 Earth System Model
23 El Niño–Southern Oscillation
24 Niño–Southern Oscillation
25 North Pacific
26 North Pacific anticyclone
27 Pacific
28 Pacific anticyclone
29 Sea
30 account
31 air-sea CO2
32 analysis
33 anomalies
34 anticyclone
35 coefficient
36 contribution
37 eastward shift
38 effect
39 empirical orthogonal function (EOF) analysis
40 evaporation
41 evolution
42 fall
43 flux anomalies
44 function analysis
45 gas transfer coefficient
46 interannual variability modes
47 interannual variance
48 marginal seas
49 mature phase
50 mode
51 mode accounts
52 model
53 northwest
54 oceanic CO2
55 oscillations
56 partial pressure
57 phase
58 position
59 pressure
60 pressure anomalies
61 process
62 results
63 sea surface temperature
64 season-reliant empirical orthogonal function (S-EOF) analysis
65 shift
66 speed
67 spring
68 subsequent spring
69 summer
70 surface temperature
71 surface wind speed
72 system model
73 temperature
74 total interannual variance
75 transfer coefficient
76 variability modes
77 variance
78 version
79 western North Pacific
80 western North Pacific anticyclone
81 wind speed
82 winter
83 schema:name Seasonally evolving dominant interannual variability mode of air-sea CO2 flux over the western North Pacific simulated by CESM1-BGC
84 schema:pagination 1854-1865
85 schema:productId Nc22abf0b49c246a7b03d43aba4bd182b
86 Nef88df0f502e49409bae439ba47d8c81
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091323743
88 https://doi.org/10.1007/s11430-015-9085-4
89 schema:sdDatePublished 2022-08-04T17:05
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N686ab8289c7446a7ba37ad83c013b3d5
92 schema:url https://doi.org/10.1007/s11430-015-9085-4
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N686ab8289c7446a7ba37ad83c013b3d5 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Na0bf2bc861814559b7b2117f760da177 schema:issueNumber 10
99 rdf:type schema:PublicationIssue
100 Na9eb8bd6c64c4c2aa165443673229e8d rdf:first sg:person.01253576673.76
101 rdf:rest Nec782f7974f64761bb51bf49e7d05d3e
102 Nc22abf0b49c246a7b03d43aba4bd182b schema:name dimensions_id
103 schema:value pub.1091323743
104 rdf:type schema:PropertyValue
105 Nce4dc524ceb1443bae47327730ec278f rdf:first sg:person.011071224271.00
106 rdf:rest Na9eb8bd6c64c4c2aa165443673229e8d
107 Nd36ebdea61684a3c9f4deefe187f822c schema:volumeNumber 60
108 rdf:type schema:PublicationVolume
109 Ne132ee376aab4c0aa011da7f8a7781b3 rdf:first sg:person.016506136343.49
110 rdf:rest Nce4dc524ceb1443bae47327730ec278f
111 Nec782f7974f64761bb51bf49e7d05d3e rdf:first sg:person.012063027405.06
112 rdf:rest rdf:nil
113 Nef88df0f502e49409bae439ba47d8c81 schema:name doi
114 schema:value 10.1007/s11430-015-9085-4
115 rdf:type schema:PropertyValue
116 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
117 schema:name Earth Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
120 schema:name Oceanography
121 rdf:type schema:DefinedTerm
122 sg:grant.8224859 http://pending.schema.org/fundedItem sg:pub.10.1007/s11430-015-9085-4
123 rdf:type schema:MonetaryGrant
124 sg:grant.8228378 http://pending.schema.org/fundedItem sg:pub.10.1007/s11430-015-9085-4
125 rdf:type schema:MonetaryGrant
126 sg:journal.1312375 schema:issn 1674-7313
127 1869-1897
128 schema:name Science China Earth Sciences
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.011071224271.00 schema:affiliation grid-institutes:grid.424023.3
132 schema:familyName Zhou
133 schema:givenName TianJun
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011071224271.00
135 rdf:type schema:Person
136 sg:person.012063027405.06 schema:affiliation grid-institutes:grid.424023.3
137 schema:familyName Wu
138 schema:givenName Bo
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012063027405.06
140 rdf:type schema:Person
141 sg:person.01253576673.76 schema:affiliation grid-institutes:grid.424023.3
142 schema:familyName Chen
143 schema:givenName XiaoLong
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253576673.76
145 rdf:type schema:Person
146 sg:person.016506136343.49 schema:affiliation grid-institutes:grid.410726.6
147 schema:familyName Jin
148 schema:givenName ChenXi
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016506136343.49
150 rdf:type schema:Person
151 sg:pub.10.1007/s10872-009-0060-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048254741
152 https://doi.org/10.1007/s10872-009-0060-6
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11434-011-4372-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033710580
155 https://doi.org/10.1007/s11434-011-4372-8
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s13351-014-4501-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014513961
158 https://doi.org/10.1007/s13351-014-4501-9
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, 100049, Beijing, China
161 schema:name Beijing Meteorological Service Center, 100089, Beijing, China
162 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
163 University of Chinese Academy of Sciences, 100049, Beijing, China
164 rdf:type schema:Organization
165 grid-institutes:grid.424023.3 schema:alternateName LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
166 schema:name LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...