Identification of hydraulic conductivity distributions in density dependent flow fields of submarine groundwater discharge modeling using adjoint-state sensitivities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01-09

AUTHORS

Bill X. Hu, YanZhao Cao, WeiDong Zhao, Feng Bao

ABSTRACT

A mathematical optimal control method is developed to identify a hydraulic conductivity distribution in a density dependent flow field. Using a variational method, the adjoint partial differential equations are obtained for the density- dependent state equations used for the saline aquifer water flow. The adjoint equations are numerically solved in through a finite difference method. The developed method is applied to identify the hydraulic conductivity distribution through the numerical solution of an optimal control problem. To demonstrate the effectiveness of the optimal control method, three numerical experiments are conducted with artificial observation data. The results indicate that the developed method has the potential to accurately identify the hydraulic conductivity distribution in a saline water aquifer flow system. More... »

PAGES

770-779

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11430-015-5236-x

DOI

http://dx.doi.org/10.1007/s11430-015-5236-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048519869


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "School of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China", 
            "Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, Auburn University, 36849, Auburn, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.252546.2", 
          "name": [
            "Department of Mathematics and Statistics, Auburn University, 36849, Auburn, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "YanZhao", 
        "id": "sg:person.014451517141.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014451517141.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics, Shandong University, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Mathematics, Shandong University, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "WeiDong", 
        "id": "sg:person.010445043125.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445043125.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, Auburn University, 36849, Auburn, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.252546.2", 
          "name": [
            "Department of Mathematics and Statistics, Auburn University, 36849, Auburn, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bao", 
        "givenName": "Feng", 
        "id": "sg:person.010573665545.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573665545.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/380612a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000392119", 
          "https://doi.org/10.1038/380612a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-010-0599-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029013056", 
          "https://doi.org/10.1007/s10040-010-0599-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/380579a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007853607", 
          "https://doi.org/10.1038/380579a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58767-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017745364", 
          "https://doi.org/10.1007/978-3-642-58767-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82118-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039359666", 
          "https://doi.org/10.1007/978-3-642-82118-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-009-0524-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022130872", 
          "https://doi.org/10.1007/s10040-009-0524-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01-09", 
    "datePublishedReg": "2016-01-09", 
    "description": "A mathematical optimal control method is developed to identify a hydraulic conductivity distribution in a density dependent flow field. Using a variational method, the adjoint partial differential equations are obtained for the density- dependent state equations used for the saline aquifer water flow. The adjoint equations are numerically solved in through a finite difference method. The developed method is applied to identify the hydraulic conductivity distribution through the numerical solution of an optimal control problem. To demonstrate the effectiveness of the optimal control method, three numerical experiments are conducted with artificial observation data. The results indicate that the developed method has the potential to accurately identify the hydraulic conductivity distribution in a saline water aquifer flow system.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11430-015-5236-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312375", 
        "issn": [
          "1674-7313", 
          "1869-1897"
        ], 
        "name": "Science China Earth Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "keywords": [
      "optimal control method", 
      "hydraulic conductivity distribution", 
      "adjoint partial differential equations", 
      "optimal control problem", 
      "partial differential equations", 
      "artificial observation data", 
      "control method", 
      "aquifer flow system", 
      "finite difference method", 
      "adjoint equations", 
      "differential equations", 
      "control problem", 
      "state equation", 
      "numerical solution", 
      "numerical experiments", 
      "difference method", 
      "conductivity distribution", 
      "variational method", 
      "equations", 
      "discharge modeling", 
      "flow field", 
      "observation data", 
      "flow system", 
      "water flow", 
      "problem", 
      "modeling", 
      "solution", 
      "distribution", 
      "effectiveness", 
      "field", 
      "system", 
      "flow", 
      "method", 
      "results", 
      "identification", 
      "data", 
      "experiments", 
      "potential", 
      "sensitivity", 
      "mathematical optimal control method", 
      "density dependent flow field", 
      "dependent flow field", 
      "density- dependent state equations", 
      "saline aquifer water flow", 
      "aquifer water flow", 
      "saline water aquifer flow system", 
      "water aquifer flow system", 
      "submarine groundwater discharge modeling", 
      "groundwater discharge modeling", 
      "adjoint-state sensitivities"
    ], 
    "name": "Identification of hydraulic conductivity distributions in density dependent flow fields of submarine groundwater discharge modeling using adjoint-state sensitivities", 
    "pagination": "770-779", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048519869"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11430-015-5236-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11430-015-5236-x", 
      "https://app.dimensions.ai/details/publication/pub.1048519869"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_695.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11430-015-5236-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-5236-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-5236-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-5236-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11430-015-5236-x'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      81 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11430-015-5236-x schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N7dd18236a9a843739490a91eed55312c
4 schema:citation sg:pub.10.1007/978-3-642-58767-2
5 sg:pub.10.1007/978-3-642-82118-9
6 sg:pub.10.1007/s10040-009-0524-1
7 sg:pub.10.1007/s10040-010-0599-8
8 sg:pub.10.1038/380579a0
9 sg:pub.10.1038/380612a0
10 schema:datePublished 2016-01-09
11 schema:datePublishedReg 2016-01-09
12 schema:description A mathematical optimal control method is developed to identify a hydraulic conductivity distribution in a density dependent flow field. Using a variational method, the adjoint partial differential equations are obtained for the density- dependent state equations used for the saline aquifer water flow. The adjoint equations are numerically solved in through a finite difference method. The developed method is applied to identify the hydraulic conductivity distribution through the numerical solution of an optimal control problem. To demonstrate the effectiveness of the optimal control method, three numerical experiments are conducted with artificial observation data. The results indicate that the developed method has the potential to accurately identify the hydraulic conductivity distribution in a saline water aquifer flow system.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N4308120f63b0445c822bbfe6ba8ab015
17 Nde425c3bdcc54ed2a01e1b4fc30b0ef1
18 sg:journal.1312375
19 schema:keywords adjoint equations
20 adjoint partial differential equations
21 adjoint-state sensitivities
22 aquifer flow system
23 aquifer water flow
24 artificial observation data
25 conductivity distribution
26 control method
27 control problem
28 data
29 density dependent flow field
30 density- dependent state equations
31 dependent flow field
32 difference method
33 differential equations
34 discharge modeling
35 distribution
36 effectiveness
37 equations
38 experiments
39 field
40 finite difference method
41 flow
42 flow field
43 flow system
44 groundwater discharge modeling
45 hydraulic conductivity distribution
46 identification
47 mathematical optimal control method
48 method
49 modeling
50 numerical experiments
51 numerical solution
52 observation data
53 optimal control method
54 optimal control problem
55 partial differential equations
56 potential
57 problem
58 results
59 saline aquifer water flow
60 saline water aquifer flow system
61 sensitivity
62 solution
63 state equation
64 submarine groundwater discharge modeling
65 system
66 variational method
67 water aquifer flow system
68 water flow
69 schema:name Identification of hydraulic conductivity distributions in density dependent flow fields of submarine groundwater discharge modeling using adjoint-state sensitivities
70 schema:pagination 770-779
71 schema:productId N46f3b5a0ba8f40c1be4841f4433cdc28
72 N550778807bb04599afb119dec146509f
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048519869
74 https://doi.org/10.1007/s11430-015-5236-x
75 schema:sdDatePublished 2022-01-01T18:39
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N176dca9289e6463fb64bd001fdf2273a
78 schema:url https://doi.org/10.1007/s11430-015-5236-x
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N06b79c70e2814b8292d7fbd8072bcb21 rdf:first sg:person.014451517141.85
83 rdf:rest N2b5cfdfe349e462e80237b652a32495f
84 N176dca9289e6463fb64bd001fdf2273a schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N2b5cfdfe349e462e80237b652a32495f rdf:first sg:person.010445043125.44
87 rdf:rest Ncdd83dd050dd4825adbf6dc15cde1f98
88 N4308120f63b0445c822bbfe6ba8ab015 schema:volumeNumber 59
89 rdf:type schema:PublicationVolume
90 N46f3b5a0ba8f40c1be4841f4433cdc28 schema:name doi
91 schema:value 10.1007/s11430-015-5236-x
92 rdf:type schema:PropertyValue
93 N550778807bb04599afb119dec146509f schema:name dimensions_id
94 schema:value pub.1048519869
95 rdf:type schema:PropertyValue
96 N7dd18236a9a843739490a91eed55312c rdf:first sg:person.012556140447.41
97 rdf:rest N06b79c70e2814b8292d7fbd8072bcb21
98 Ncdd83dd050dd4825adbf6dc15cde1f98 rdf:first sg:person.010573665545.63
99 rdf:rest rdf:nil
100 Nde425c3bdcc54ed2a01e1b4fc30b0ef1 schema:issueNumber 4
101 rdf:type schema:PublicationIssue
102 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
103 schema:name Earth Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Geography and Environmental Geoscience
107 rdf:type schema:DefinedTerm
108 sg:journal.1312375 schema:issn 1674-7313
109 1869-1897
110 schema:name Science China Earth Sciences
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.010445043125.44 schema:affiliation grid-institutes:grid.27255.37
114 schema:familyName Zhao
115 schema:givenName WeiDong
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445043125.44
117 rdf:type schema:Person
118 sg:person.010573665545.63 schema:affiliation grid-institutes:grid.252546.2
119 schema:familyName Bao
120 schema:givenName Feng
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573665545.63
122 rdf:type schema:Person
123 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.255986.5
124 schema:familyName Hu
125 schema:givenName Bill X.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
127 rdf:type schema:Person
128 sg:person.014451517141.85 schema:affiliation grid-institutes:grid.252546.2
129 schema:familyName Cao
130 schema:givenName YanZhao
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014451517141.85
132 rdf:type schema:Person
133 sg:pub.10.1007/978-3-642-58767-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017745364
134 https://doi.org/10.1007/978-3-642-58767-2
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-642-82118-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039359666
137 https://doi.org/10.1007/978-3-642-82118-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10040-009-0524-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022130872
140 https://doi.org/10.1007/s10040-009-0524-1
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10040-010-0599-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029013056
143 https://doi.org/10.1007/s10040-010-0599-8
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/380579a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007853607
146 https://doi.org/10.1038/380579a0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/380612a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000392119
149 https://doi.org/10.1038/380612a0
150 rdf:type schema:CreativeWork
151 grid-institutes:grid.252546.2 schema:alternateName Department of Mathematics and Statistics, Auburn University, 36849, Auburn, AL, USA
152 schema:name Department of Mathematics and Statistics, Auburn University, 36849, Auburn, AL, USA
153 rdf:type schema:Organization
154 grid-institutes:grid.255986.5 schema:alternateName Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA
155 schema:name Department of Geological Sciences, Florida State University, 32306, Tallahassee, FL, USA
156 School of Water Resources and Environmental Sciences, China University of Geosciences, 100083, Beijing, China
157 rdf:type schema:Organization
158 grid-institutes:grid.27255.37 schema:alternateName School of Mathematics, Shandong University, 250100, Jinan, China
159 schema:name School of Mathematics, Shandong University, 250100, Jinan, China
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...